Asian Journal of Information Technology 8 (1): 14-23, 2009

ISSN: 1682-3915
© Medwell Journals, 2009

On Improving the Naive String Matching Algorithm

Rami H. Mansi and Jehad Q. Odeh
Department of Computer Science, Al-Bayt University, Mafraqg, Jordan

Abstract: String matching algorithms are essential components used in implementations of the practical
software under most operating systems. Tt is important to any string matching algorithm to be able to locate

quickly some or all occurrences of a user-specified pattern i a text. In this study, we propose three new exact
single pattern matching algorithms. These are: FC-RT (First Character-Rami and Jehad), FL.C-RT (first and last
Characters-Rami and Jehad) and FMILC-RT (first, middle and last Characters-Rami and Jehad). The proposed
algorithms rely on utilizing new technicue based on occurrence list. The proposed algorithms are analyzed and
implemented as a part of the experimental simulation system (RJ-SMT). The extensive testing and comparisons
with the Naive (Brute Force) algorithm show that the proposed algorithms enhance execution time by 7.4, 16.2

and 20.6%, respectively.

Key words: String matching, naive algorithm, occurrence list, complexity

INTRODUCTION

The string matching problem may define as finding
one or more of the occurrences of a pattern P of length m
m atext T of length n. It has been extensively studied
and many techniques and algorithms have been designed
to solve this problem. These algorithms are mostly
used i mformation retrieval, bibliographic search,
molecular biology and question answering applications
(Lecrog, 2007, Wu et al., 2007).

String matching 1s a very important subject m the
wider domain of text processing and its algorithms are the
basic components used in implementations of practical
software under most operating systems. Moreover, they
emphasize programming methods that serve as paradigms
mn other fields of computer science (Watson, 2002;
Charras and Lecrog, 2004).

In many mformation retrieval and text-editing
applications, it is necessary to be able to locate quickly
some or all occurrences of a user-specified pattern of
words and phrases in a text (Algadi er af, 2007).
Furthermore, string matching has many applications
mcluding database query, DNA and protemn sequence
analysis. Therefore, the efficiency of string matching has
a great impact on the performance of these applications
(Crochemore and Lecrog, 2003). Although, data are
memorized in various ways, text remains the main and
most efficient form to exchange information (Kim and Kim,
1999; Sheu et al., 2008).

Basically, a string matching algorithm uses a window
to scan the text. The size of this window is equal to the
length of the pattern. It first aligns the left ends of the
window and the text. Then, 1t checks if the pattern occurs

in the window (this specific research is called an attempt)
and shifts the window to the right. It repeats the same
procedure again until the right end of the window
goes beyond the right end of the text (Amintoosi et al.,
2006).

Exact string matching means finding one or all exact
occurrences of a pattern in a text. Naive (Brute force)
algorithm, as Charras and Lecrog (2004) mentioned,
Boyer and Moore (1977), Morris and Pratt (Watsor, 2002)
and Knuth et al. (1977) are exact string matching
algorithms.

Approximate string matching 1s the techmique of
finding approximate (may not exact) matches to a pattern
in a string (Karp and Rabin, 1987). The closeness of a
match is measured in terms of the number of primitive
operations necessary to convert the string into an exact
match. The usual primitive operations are insertion,
deletion and substitution (Amintoosi ef al., 2006). So, the
input of an approximate string matching algorithm is a text
string T, a pattern string P and an edit cost bound k and
the task of the algorithm 1s to answer the question: can we
transform a part of T to P using at most k additions,
deletions and substitutions? (Navarro and Fredriksson,
2004).

Some of the exact string matching algorithms have
been presented to solve the problem of searching for a
single pattern i a text, such as Boyer and Moore (1977),
Morris and Pratt (Watson, 2002), Knuth et al. (1977) and
Karp and Rabmn (1987), algorithms. On the other hand,
some have been presented to solve the problem of
searching for multiple patterns in a text.

Although, the Kmnuth-Morris-Pratt algorithm has
better worst-case running time than the Boyer-Moore

Corresponding Author: Rami H. Mansi, Department of Computer Science, Al-Bayt University, Mafraq, Jordan

14

Asian J. Inform. Technol., 8 (1): 14-23, 2009

algorithm, the latter is known to be extremely efficient in
practice (Crochemore et al., 1994, Watson and Watson,
2003).

Since 1977, with the publication of the Boyer-Moore
algorithm, there have been many papers published that
deal with exact pattern matching and n particular discuss
and/or introduce variants of Boyer-Moore algorithm. The
pattern-matching literature has had two main categories
(Danvy and Rohde, 2006; Franek et al., 2006):

1. Reducing the number of character comparisons
required in the worst and average cases

Reducing the time requirement in the worst and
average cases

This research 1s an attempt to enhance the time
complexity of the naive (Brute force) string matching
algorithm 1in its average and worst cases.

The Brute force algorithm consists of checking, at all
positions in the text between 0 and n - m, whether an
occurrence of the pattern starts there or not. Then, after
each attempt, it shifts the pattern by exactly one position
to the right.

The brute force algorithm requires no preprocessing
phase and a constant extra space in addition to the
pattern and the text. During the searching phase, the text
character comparisons can be done in any order. The time
complexity of the searching phase i3 O (mn), where m 1s
the length of the pattern and n 1s the length of the text and
the expected number of text character comparisons 1s 2n.

In order to reduce the processing time of the naive
algorithm, we present three exact single pattern matching
algorithms, FC-RJ (First Character-Rami and Jehad),
FLC-RJ (First and Last Characters-Rami and JTehad) and
FMLC-RT (First, Middle and Last Characters-Rami and
Tehad) algorithms. The proposed algorithms improve the
length of the shifts of the brute force algorithm. The
extensive testing of the proposed algorithms yields to
speeding up the Brute force algorithm.

FC-RJ algorithm: Most of string matching algorithms
search for the pattern i the whole text and match
(compare) most of the text's characters with the pattern's
characters (Lecrog, 2007).

Instead, it 18 reasonable to assume that it will be more
efficient to match the pattern with the sub-strings of the
text, which start with the pattern's first character, while
ignoring the rest of the characters in the text. Depending
on the concept and the research of the proposed
algorithm, we name it as FC-RJ algorithm. The FC-RJ
algorithm finds the indices of all occurrences of the first

15

character of the pattern in the text prior to the searching
phase. These mdices should be saved mn a list (array) to
be accessed during the searching phase, which we name
it as (Occurrence List). In the searching phase, the
algorithm uses the Occurrence List to move to the indices
of the text that contain the first character of the pattern.

The main procedures of the proposed algorithm are
expressed as follows:

Preprocessing phase:

1. The algorithm new array called
(Occurrence List) of size (n - m + 1), where n is the
size of the text and m 1s the size of the pattern. The

creates a

length of the Occurrence List 15 (n - m + 1) because

it 1s 1mpossible to the pattermn to occur after the

position (n - m) in the text

This array will hold the indices of the occurrences of

the pattern’s first character m the text using an

integer variable (1) starting from (0) and incremented

by one after each match

3. The algorithm scans the text in a single pass, using
an integer variable (j) and compares its characters
with the pattern’s first character. If the cuwrrent
character of the text (jth character) is equal to the
pattern's first character, the algorithm saves the index
of the current character in the text (the value of 1) n
the ith index of the Occurrence List array and
increments the value of (1) by one

Searching phase:

1. If the value of (1) 1s greater than (0); this means the
pattern's first character occurs in the text. So, go to
step (2), otherwise; the pattern cannot be found in
the text at all. So, go to step (6)

Create an integer variable (c), starts from (0)to (i- 1)
and incremented by one

3. If the value of the variable (c) is less than (i); go to
step (4). Otherwise, go to step (6)

Scan the sub-string of the text starting from the index
{Occurrence List (¢) + 1) to ((Occurrence List (¢) +
m - 1), which represents the size of the pattern and
compare each character of this sub-string with the
corresponding character i the pattern. If all
characters are matched, then this is an occurrence of
the pattern in the text at index (Occurrence Tist (¢)).
5. Increment the value of (c) by one and go to step (3)
Exit

In step (1) of the searching phase, if the value of (i) is
equal to (0), then this means that the first character of the
pattern does not occur mn the text at all and there 1s no

Asian J. Inform. Technol., 8 (1): 14-23, 2009

need to search for the pattern. In step (2), the value of the
variable (¢) must not exceed the value (i-1), which is the
number of the occurrences of the pattern’s first character
in the text.

Pseudocode of FC-RJ algorithm: The pseudocode of the
preprocessing phase of FC-RJ algorithm 1s expressed as
follows:

procedure PRE-FC-RJ (array T[n],array P[m])
var j:==i:=0 as integer
Create array:
Occurrence List[n-m+1]
for j from 0 to n-m do
iff T (j) =P (0) then
Occurrence List (i):=j
=i+l
SEARCH-FC-RI (T[n], P[m], i,
Occurrence_List[n-m+1])
end procedure

The pseudocode of the searching phase of FC-RT
algorithm 13 as follows:

procedure SEARCH-FC-RJ (array T[n],array P[m], 1,
array Occurrence List[n-mt1])
if i > 0 then
if m=1 then output the
content of the Occurrence_List ()
else
var ¢;=xx:=0, count;=1,
as integer
var value as Boolean
while ¢ <1 do
value:= true
for x from Occurrence List (c)+1 to
Occurrence_List (c)+ m-1 do
if T (x)=P (count) then
value:=false
break for loop
count:= count+1
if value=true then
output (Occurrence List (o))
c=ct+l
count:=1
else
output ("The pattern is not
found!™)
end procedure

Example 1: A single pattemn matching example using
FC-RI algorithm.

For simplicity, assume that we have the following text
and pattern and we want to find all occurrences of the
pattern in the text:

Text
AMACCOAMBACHAMABCOAMALCO

Pattemn:
AMABCO

16

Then the algorithm creates the Occurrence List to
save the indices of the text's characters that equal the
pattern’s first character, which is (A) in this example. The
algorithm searches for the first character of the pattern in
the range of mdices from (0) to (n-m = 24 - 6 = 18) of the
text, because what is left is less than the length of the
pattern and it is impossible to the pattern to occur after
index (18) in the text. The Occurrence List will be as
follows:

Occurrence list
0 2 & 9

12 14 18

In the searching phase, the algorithm will make (7)
matching attempts to search for the pattern in the text
using the elements values of the Occurrence Tist as
indices, as follows:

First attempt (at index O, three character comparisons,
Mismatch):

AMACCOAMBAMHAMABCOAMALCO

AMABCO

Second attempt (at index 2, one character comparison,
Mismatch):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

Third attempt (at ndex 6, two character comparisons,
Mismatch):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

Fourth attempt (at index 9, two character comparisons,
Mismatch):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

Fifth attempt (at index 12, five character comparisons,
Match):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

Sixth attempt (at index 14, one character comparison,
Mismatch):

AMACCOAMBAMHAMABCOAMALCO

AMABCO

Seventh attempt (at index 18, three character comparison,
Mismatch):

AMACCOAMBAMHAMABCOAMALCO

AMABCO

The algorithm performed (17) character comparisons
in the example.

Asian J. Inform. Technol., 8 (1): 14-23, 2009

Analysis of FC-RJ algorithm: The preprocessing phase
of FC-RJ algorithm is concerned in determining and
saving the indices of the text segments that represent
expected occurrences of the pattern. These indices are
saved in the Occurrence List array of size (i). This
variable represents the number of expected occurrences
of the pattern inthe text, which is at most, equals to
(n-m + 1), where n 13 the length of the text and m 1s the
length of the pattern.

To do so, the preprocessing phase scans the first
(n-m) characters of the text. Thus, it is linear in O (n-m),
m the best, average and worst cases of FC-RJ
algorithm.

The searching phase uses the Occurrence List array
tomove to the ndices of the text that represent expected
occurrences of the pattern using the variable x, which
starts with the value (0) and ends with (i - 1), where i is
the number of expected occurrences of the pattern in
the text.

The best case of the searching phase of FC-RJ
algorithm arises when the variable i equals to zero. In
other words, when there are no occurrences of the pattern
mn the text m this case, the time complexity of the
searching phase of FC-RJ algorithm 1s O (1).

FC-RI algorithm uses the Occwrence List to search
the text for the pattern. The number of places (indices
i the text) that the algorithm starts searching at (1)
represents the mumber of expected occurrences of the
pattern in the text. At each xth index in the text, the
searching phase tries to match the segment (x + 1...
x + m-1) of the text with the pattern, character by
character. So, the algorithm compares m-1 characters at
each xth index, until it reaches the (i-1)th element of the
Occurrence List array. This means, 1t takes (1)*(m-1) time.
Thus, the searching phase takes O ((ixm)-1) time in the
worst case of FC-RI algorithm, where 1 15 the number of
expected occurrences of the pattern in the text and m is
the length of the pattern. The algorithm performs at most
(1m)-1 text character comparisons during the searching
phase.

The preprocessing phase of the FC-RI algorithm
searches the first n-m portion of the text for the expected
occurrences of the pattemn. Therefore, FC-RJ algorithm
requires O (n-m) extra space for the Occurrence List array
in addition to the original text and pattern. If the size of
the Occurrence List array is specified dynamically; the
preprocessing phase will require 1 additional space instead
of n-m + 1, where 1 18 the number of expected occurrences
of the pattern in the text.

FLC-RJalgorithm: The concept of FLC-RJ (first and Last
Characters-Rami and Jehad) algorithm follows the concept

17

of FC-RT algorithm. Tt seems more efficient to attempt
matching the pattern only with the sub-strings of the text
that start with the pattern’s first character and also end
with the pattern’s last character.

This technique decreases the number of character
comparisons in the text. It can be achieved by smmply
addmng (restriction) i the
preprocessing phase of FC-RI algorithm.

Because this algorithm searches for the first and last
characters of the pattemn in the text; it requires that the
pattern to be of length more than one character to work

another condition

efficiently. If the pattern consists of only one character,
then this character will be considered as the first and the
last character of the pattern and it will be compared twice
instead of one time at each comparison operation with the
text characters. To avoid occurring of this case, the
algorithm behaves as FC-RJ algorithm in such case. In
other words, if the pattern consists of only one character;
FLC-RI algorithm will search the text only for the first
character of the pattern and it will behave exactly as FC-RJ
algorithm.

Pseudocode of FLC-RJ algorithm: The pseudocode of
the preprocessing phase of FLC-RJ algorithm is as
follows:

procedure PRE-FL.C-RJ (array
T[n),array P[m])
var j=1:=0 as integer
Create array:
Occurrence List[n-m+1]
if m>1 then
for j from 0 to n-m do
if T (=P (0)AND
T (j+m-1)=P (m-1) then
Occurrence List (=]
=i+l
else
for j from 0 to n-m do
ift T (j) =P (0) then
Occurrence_List (i):=j
i=i+1
SEARCH-FLC-RJ (T[n], P[m], L.
Occurrence_List[n-m+1])
end procedure

The searching phase should not compare the
characters that are already matched during the
preprocessing phase. This implies that the first and the
last characters of each segment in the text will not be
compared with the characters of the pattern during the
searching phase, since they have been matched during
the preprocessing phase and there is no need to be
compared again.

The searching phase of FLC-RI algonthm 1 as
follows:

Asian J. Inform. Technol., 8 (1): 14-23, 2009

procedure SEARCH-FL.C-RJ
(array T[n]array Pm], i,
array Occumrence List[n-m+1])
if'i = 0 then
if m==1 then
output the content of the
Occurrence List ()
else
var ¢;=xx:=0, count;=1,
var value as Boolean
while ¢ < i do
value:=true
for x from
Occurrence_List (¢) + 1
to Occurrence List (c)+ m -2 do
if T (x)=#P (count) then
value:=false
break the for loop
count:= count+1
if value—true then
Output
(Occurrence_List (c))
c:=c+1
count:=1
else output ("The pattern is not found!™)
end procedure

Example 2: A single pattern matching example using
FLC-RJ algorithm:

Assume that the same text and pattern of example 1
are used in this example utilizing F1.C-RT algorithm.

Text
AMACCOAMBACHAMABCOAMALCO

Pattern:
AMABCO

Then the preprocessing phase will determine the
indices of the expected occurrences of the pattern in the
text by comparing the first character of the pattern, which
15 (A) in this example, with the first n-m characters of the
text, since the pattern cannot be occurred after the first
n - m characters in the text, using a variable j. If the current
jth character in the text is matched with the pattern’s first
character; the last character of the pattern will be
compared with the (j + m-1)th character of the text, since
the segment (j...j + m-1) represents the length of the
pattern (m).

If the first and the last characters of a segment in the
text equal the first and the last characters of the pattern
respectively, then this segment will be considered as an
expected occurrence of the pattern m the text and the
mndex of this segment in the text will be saved in the
Occurrence Tist array. The Occurrence List of this
example will be as follows:

Occurrence List
0 12

18

18

In the searching phase, the algorithm will make (3)
matching attempts to search for the pattern in the text
using the elements values of the Occurrence Tist as
indices, as follows:

First attempt (at index O, three character comparisons,
Mismatch):

AMACCOAMBAMHAMABCOAMALCO

AMABCO

Second attempt (at mndex 12, four character comparisons,
Match):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

Third attempt (at index 18, three character comparison,
Mismatch):
AMACCOAMBAMHAMABCOAMALCO

AMABCO

The algorithm performs (10) character comparisons
1n the example. As shown in this example, 1t 1s clear that
FLC-RJ algorithm decreases the number of character
comparisons as compared to FC-RT algorithm, because
comparing the first and last characters of the pattern
elimmates some of the mismatches even before the
searching phase started.

Analysis of FLC-RJ algorithm: The preprocessing phase
scans the first (n-m) characters of the text to determine the
expected occurrences of the pattern in the text. Thus, the
preprocessing phase is linear in O (n-m) in the best,
average and worst cases of FLC-RT algorithm.

The searching phase uses the Occurrence List array
to reach the indices of the text that represent expected
occurrences of the pattern using the variable (x), which
starts with the value (0) and ends with (1-1).

The best case of the searching phase of FLC-RJ
algorithm arises when the variable (i) equals to zero. In
other words, when there are no occurrences of the pattern
in the text m this case, the time complexity of the
searching phase of FLC-RJ algonithm s O (1).

FLC-RT algorithm uses the Occurrence List to search
the text for the pattern. The number of places that the
algorithm starts searchung at 1s (1), which represents the
number of expected occurrences of the pattern in the text.
At each xth index in the text, the searching phase tries to
match the segment (x + 1...x + m-2) of the text with the
pattern, character by character. It does not compare the
first and the last character of the pattern and the text’s
segments; since they already have been matched during
the preprocessing phase. So, the algorithm compares m-2

Asian J. Inform. Technol., 8 (1): 14-23, 2009

characters at each xth index, until it reaches the (i-1)th
element of the Occurence List array. This means, it
takes (1)*(m-2) time. Thus, the searching phase takes O
((1xm)-21) time in the worst case of FLC-RJ algorithm,
where i is the number of expected occurrences of the
pattern in the text and m is the length of the pattern. The
algorithm performs at most (um)-21 text character
comparisons during the searching phase. The
preprocessing phase of the FLC-RT algorithm searches the
first n-m portion of the text for the expected occurrences
of the pattern. Therefore, FLC-RJ algorithm requires O
(n-m) extra space for the Occurrence List array, in
addition to the original text and pattern. If the size of the
Occurrence List array is specified dynamically; the
preprocessing phase will require 1 additional space instead
of n-m + 1, where 1 18 the number of expected occurrences
of the pattern in the text.

FMLC-RJ algorithm: FMLC-RT algorithm adds another
restriction to a sub-string of the text to be considered as
an expected occurrence of the pattern. Tt seems more
efficient to attempt matching the pattern only with the
sub-strings of the text that start with the pattern’s first
character and end with the pattern’s last character and at
the same time, they have middle characters equal the
pattern’s middle character.

This technique decreases the number of character
comparisons in the text during the searching phase. It can
be achieved by adding another condition in the
preprocessing phase of F1.C-RT algorithm.

This algorithm requires the pattern to be of length
more than two characters to work efficiently. Moreover, it
should cover the case when the pattern consists of only
one or two characters (m <3). The preprocessing phase of
FMLC-RT algorithm behaves as the preprocessing phase
of FLC-RI algorithm if m = 2 and as the preprocessing
phase of FC-RT algorithm if m = 1. Tn fact, most of these
patterns used in the real world applications are of lengths
more than two characters.

Pseudocode of FMLC-R.J algorithm: The preprocessing
phase of FMILC-RT algorithm can be expressed as follows:

procedure PRE-FMLC-RJ (array T[n],
array P{m])
var j:=i:=0,
mid:= floor (m/2) as integer
Create array: Occurrence List{n-m+1]
if' m > 2 then
for j firom O to n-m do
if T =P (0)
AND T (j+midy=P (mid)
AND T (j+m-1)—P (m-1)
then

Occurrence_List (i):=j
i=i+1

19

else
if m > 1 then
for j from O to n-m do
i T (=P (0)

AND T (j+m-1)=P (m-1) then
Occurrence_List (1):=)
i=i+1

else

for j from O to n-m do
if T (j)==P (0) then
Occurrence List (i)=j

i=i+1
SEARCH-FMLC-RJ (T[n], P[m], i,
Occurrence_List[n-m+1])
end procedure

The searching phase compares the characters of the
pattern with the characters of each expected occurrence
except the first, middle and last characters, which have
been matched in the preprocessing phase.

procedure SEARCH-FMILC-RT (array T[n],
array P[m], i1,
array Occurrence List[n-m+17)
If'i =0 then
it = =1 then
output the content of the
Occurrence List ()
else
var ¢;=x:=0, count:=1,
as integer
var value as Boolean
while ¢ <1 do
value:=true
for x from
Occurrence List (c)+1
to Occurrence_List (¢)+ m-2
do
if count—rnid then
increment x and count by 1
if T (x)=P (count) then
value:=tfalse
break the for loop
count:= count+1
if value—true then
output
(Occurrence_List (¢))
c=c+1
count:=1
else
output ("The pattern is not found!")
end procedure

Example 3: A single pattern matching example using
FMLC-RI algorithm:

Assume that the same text and pattern of example 1
are used m this example utihzing FMLC-RJ algorithm, as
follows:

Text
AMACCOAMBACHAMABCOAMALCO

Pattern:
AMABCO

Asian J. Inform. Technol., 8 (1): 14-23, 2009

The preprocessing phase searches for the segments
of the text where the first, middle and last characters of
these segments equal the first, middle and last characters
of the pattern, respectively.

Since this condition only achieved at index (12) in the
text of this example, then the Occurrence List will be
consisting of one element, as follows:

Occurrence_List

12

This means, there is only one expected occurrence of
the pattern at index (12) in the text.

In the searching phase, the algorithm will make only
(1) matching attempt, mstead of (7) attempts of FC-RJ
algorithm and (3) attempts of FLC-RT algorithm, to search
for the same pattern in the same text using the elements
values of the Occurrence List as indices, as follows:

First attempt (at index 12, three character comparisons,
Match):

AMACCOAMBAMHAMABCOAMATLCO
AMABCO

The algorithm performed (3) character comparisons in
the example. As shown n this example, it 15 clear that
FMLC-RT algorithm decreased the number of character
comparisons of both, FC-RT and FL.C-RT algeorithms, since
this algorithm performed only (3) character comparisons
while FC-RT performed (17) and FLC-RT performed (10)
character comparisons to search for the same pattern in
the same text used in the three algorithms.

Analysis of FMLC-RJ algorithm: The preprocessing
phase of FMILC-RT algorithm is concerned in determining
and saving the indices of the text segments that represent
expected occurrences of the pattem. As in FC-RJ and
FLC-RI algorithms, these indices are saved in the
Occurrence List array of size (1). This variable represents
the number of expected occurrences of the pattern in the
text, which is at most, equals to (n-m + 1).

The preprocessing phase scans the first (n-m)
characters of the text. Thus, it is linear in O (n-m) in the
best, average and worst cases.

The searching phase uses the Occurrence List array
to reach the indices of the text that represent expected
occurrences of the pattern using the variable (x), which
starts with the value (0) and ends with (i-1). The best case
of the searching phase of FMLC-RJ algorithm arises when
the variable (1) equals to zero. In other words, when there
15 no any expected occurrence of the pattern in the text,
the best case time complexity of the searching phase of
FMIL.C-RT algorithm is O (1).

20

FMLC-RI algorithm uses the Occurrence List to
search the text for the pattern. The number of places that
the algonthm starts searching at is (1), which represents
the number of expected occurrences of the pattern in
the text. At each xth index in the text, the searching
phase tries to match the segment (x + 1... x + m-2),
except the middle character, of the text’s segments with
the pattern, character by Tt does
compare the first, middle and last characters of the pattern

character. not
with those of the text’s segments; since they already
have been matched during the preprocessing phase. So,
the algorithm compares m-3 characters at each xth
index, until it reaches the (i-1)th element of the
Occurrence List array. This means, it takes (1)<(m-2)
time. Thus, the searchung phase takes O ((1xm)-21) time in
the worst case of FMLC-RJ algorithm, where i is the
number of expected occurrences of the pattern in the
text and m 1s the length of the pattern. The algorithm
performs at most (1m)-31 text character comparisons during
the searching phase.

The preprocessing phase of the FMLC-RT algorithm
searches the first n-m portion of the text for the expected
occurrences of the pattern. Thus, FMLC-RI algorithm
requires O (n-m) extra space for the Occurrence List array
in addition to the original text and pattern. If the size of
the Occurrence List array is specified dynamically; the
preprocessing phase will require 1 additional space instead
of n-m + 1, where i is the number of expected occurrences
of the pattern in the text.

MATERIALS AND METHODS

To compare between the performance of our
algorithms with the naive (Brute force) algorithm; we have
built a string matching tool using Visual Basic 6.0
(RI-String Matching Tool (RT-SMT)). In this tool, FC-RIJ,
FLC-RT and FMLC-RT algorithms have been implemented,
1in addition to the brute force algorithm.

Figure 1 shows the interface of the RT-SMT. The tool
is available at http: /Arww. rjstringmatching. webs.com. We
have extensively tested the proposed algorithms on
random test data. A simple program 1s developed to create
random test patterns with different lengths (1-14) of
characters. Both characters of patterns and strings were
in the main memory, rather than a secondary storage
medium. The total number of nstructions that got
executed and execution time in seconds were considered
in the evaluation process.

For each pattern length, 300 randomly selected
samples were tested and averaged, while the total string
length was 10,000 of randomly generated characters.

Asian J. Inform. Technol, 8 (1): 14-23, 2009

Yelcome to the Rd String Matching Tool [RJ-3MT)

The F-SKT allows you to open o generata & text file end search for a pattern or
gensrated pattern using five string matching algorithms: FC-R, FLC-R, FMLC-R,
Brute Force and Boyertoore algorithms.

Toopen atexfile chose Cpen from File menu. To generate texts and pattaims sas
the availakle options in Generate imenu

Fig. 1: Interface of RJ-SMT
RESULTS AND DISCUSSION

Table 1 shows the experimental results of the tested
algorithims. The execution time in seconds is denoted by
(T), while the number of executed instructions is
abbreviated by (Inst) for each algorithm.

In Table 1, the execution time (T) and the number of
executed instructions (Inst) of an algorithm represent the
average of 300 runs of the algorithm using the same
pattern length (m) and randomly selected characters of the
pattern at each run.

Figure 2 shows the average number of the executed
instructions and the average execution time in seconds for
each patterns sample, of each pattern length from 1-14
utilizing FC-RJ algorithm.

It is apparent that the best performance of the FC-RJ
algorithms is when the length of the pattern was one
character. This result is reasonable, since the algorithm
only outputs the content of the Occurrence List array if
the pattern’s length is only one character.

It iz obwvious that the execution time increases as the
pattern gets longer.

Figure 3 shows the average number of the executed
instructions and the average execution time in seconds for
each patterns sample of each pattern length from 1-14
utilizing FL C-R7J algorithm.

The best performance of the FL.C-RJ algonthms is
when the length of the pattern was two characters. Since,
the algorithm only outputs the content of the
Occurrence List array if the pattern’s length is two
characters.

Figure 4 shows the average number of the executed
instructions and the average execution time in seconds for
each patterns sample of each pattern length from 1-14
utilizing FMLC-RI algorithm.

The best performance of the FML C-RJ algorithms is
when the length of the pattern was three characters. The
algonthm searches for the first, middle and last characters

21

Table 1: Experimental results of the tested algorithms

FC-RT FLC-RT FMLC-RT Brute foree
Pattern
length T Inst T Inst T Inst T Inst
1 270 1087 2.90 30 3.00 400 330 30000
2 328 1215 287 34 200 30 3.50 30414
3 3.51 1185 295 34 2.30 83 436 30421
4 3.67 1157 298 68 271 82 485 30423
5 3.70 1226 3.10 69 310 96 495 30461
6 4.00 1279 3.70 20 3.30 56 498 30452
7 430 1236 3.50 78 330 96 520 30480
8 4.40 1241 4.00 47 380 63 530 30459
9 470 1159 430 76 4.10 170 340 30501
10 4.90 1236 4.50 g4 430 132 350 30507
11 320 1226 4.80 123 4.530 192 380 30339
12 370 1339 5.20 35 5.00 143 600 30343
13 380 1579 3.50 98 5.20 224 630 30528
14 6.30 1600 3.70 g0 5.40 240 680 30533
100007 -8~ Execufed instructions
== Execution time

_é 1000 - - g

% 1001

E] M

1 L] L} T L} L] L} L] L] L] L] L] T 1
1 23 4 56 78 91011 121314
Pattern length

Fig. 2: Experimental results of FC-RJ algorithm

—&— Executed ingtructions
=—i— Exccution time

M
s

1 234 56 789
Pattern length

Fig. 3: Experimental results of FLC-RJ algorithm

10005

1004

Time and executed instructions

1 T T T T 1
10 11 12 13 14

of the pattern and then it outputs the content of the
Occumrence_List array as a result. The execution time 1s
done in the preprocessing phase in this case.

Figure 5 shows the average number of the executed
instructions and the average execution time in seconds for
each patterns sample of each pattern length from 1-14
when the brute force algorithm is used.

The best performance of the brute force algorithms is
when the length of the pattern was relatively short. Since

Asian J. Inform. Technol., 8 (1): 14-23, 2009

10007 —m— Executed instructions
—&— Execution time

g

E 1004
4
o
,§ 10
é M

1 T L] L] T L]

6 7 8 910 11 1213 14
Pattern length

1 23 4 5

Fig. 4: Experimental results of FMLC-RT algorithm
—a— Executed instructions
—&— Execution time

—— s

106000+

_.
2
(=
it

—
=
(=
o
)

100

—
(=]
x

Time and executed instructions

7 8 51011 1213 14
Pattem length

Fig. 5: Experimental results of the brute force algorithm
109 = FCRJ
—&— FLC-RJ
—4— FMLC-RJ
—— Brute force

Execution time

1III
1 23 4

56 7851011 1213 14
Paitern lenpth
Fig. 6: Execution times of the tested algorithms

the algorithm compeares almost m characters at each index
of the text, the execution tume mcreases as m gets larger.

Figure 6 shows a comparison between execution
times of the FC-RJ, FLC-RJ, FMLC-RJ and Brute Force
algorithms for each patterns sample of each pattern length
from 1-14.

Tt is apparent that the FC-RI, FLC-RJ and FMI.C-RT
algorithms outperform the performance of the brute force

algorithm.

22

Table 2: Percentages of enhancements in execution time

Algorithm Enhancement on Brute force (96)
FC-RJ 74
FLC-RJ 16.2
FMLC-RJ 20.6

It 15 clear that our proposed algorithms enhance the
execution time of string matching as compared to the
brute force algorithm. This enhancement is calculated by
considering the differences in execution times of the
algorithms to search for 14 pattems samples as recorded
inTable 1.

Table 2 presents the percentages of enhancements of
the proposed algorithms as compared to the brute force
algorithm.

CONCLUSION

In this study, three new single exact pattern matching
algorithms are proposed They are: FC-RI, FL.C-RJ and
FMILC-RT algorithms. Furthermore, a string matching tool
(RI-SMT) 15 developed to sumulate and test the
algorithms. The proposed algorithms, in addition to the
naive (Brute force) algorithm have been implemented and
compared. The FC-RI, FL.C-RT and FMLC-RIT algorithms
enhances the execution time as compared to the brute
force algorithm by 7.4, 16.2 and 20.6%, respectively. The
proposed algorithms add some restrictions (conditions) in
order to consider a segment in the text as an expected
occurrence of the pattern and then it can be referenced
during the searching phase. If the added conditions are
not satisfied for a segment in the text; it will be excluded
during the searching phase. The proposed algorithms
were implemented, analyzed, tested and compared. The
results were promising and other enhancements may be
further studied.

REFERENCES

Algadi, Z., M. Agel and T. El-Emary, 2007. Multiple-Skip
Multiple-Pattern Matching Algorithm (MSMPMA).
[AENG Int. I. Comput. Sc1., 34 (2): 14-20. http: /fwww.
1aeng.org/ljcs/issues_v34/issue 2/Ajes 34 2 03.pdf.

Amintoosi, M.H.Y ., M. Fathy and R. Monsefi, 2006. Using
pattern matching for tiling and packing problems.
Eur. J. Operat. Res., 183 (3): 950-960. DOL: 10.10164.
ejor.2006.02.029. http: //www sciencedirect. com/
science? ob=MImgé& imagekey=B6VCT-4MATNPB-
I1W& cdi=3963& user=10& orig=search& cover
Date=12%2F16%2F2007& sk=998169996& view=c
&wchp=dGLzVtb-z8kzV&md5=593a641 b3e9decedae
6415bco080795edie=/sdarticle.pdf.

Asian J. Inform. Technol., 8 (1): 14-23, 2009

Boyer, R. and J. Moore, 1977. A fast string searching
algorithm. Commun. ACM, 20(10): 761-772. DOT: 3598
42.359859. http://portal acm.org/citation. cfm ?doid=
350842.350859,

Charras, C. and T. Lecrog, 2004. Handbook of Exact
String-Matching Algorithms. 1st Edn. King’s College
London Publications, pp: 19-24. ISBN: 978-0-7546-64
98-7. www-1gm.univ-mlv fr/~lecrog/string/string pdf.

Crochemore, M., A. Czumaj, .. Gasieniec, S. Jarominelk,
T. Lecrog, W. Plandowski and W. Rytter, 1994,
Speeding up two string matching algorithms.
Algorithmicea, 12 (4-5): 247-267. DOL: 10.1007/BF011
85427. http://www springerlink. com/content/p783wl
7323874635,

Crochemore, M.C.H. and T. Lecrog, 2003. A uwmfymg look
at the apostolico-giancarlo string-matching algorithm.
I. Disc. Alg., 1: 37-52. DOL: 10.1016/51570-8667(03)
00005-4. http:/fwww-igm .univ-mlv.fi/~lecrog/articles/
jdal.pdf.

Danvy, O. and H. Rohde, 2006. On obtamning the
boyer-moore string-matching algorithm by partial
evaluation. J. Inf. Process. Lett., 99: 158-162. DOI: 10.
1016/.1pl.2006.04.001 .http: /Awww . brics.dk/RS/05/1 4/
BRICS-RS-05-14.pdf.

Franek, F., C. Jennings and W.F. Smyth, 2006. A simple
fast hybrid pattern-matching algorithm. J. Disc. Alg,.,
5:682-695.DOL:10.1016/.1da. 2006.11.004. http:/fwww.
sfu.ca/~cjenning/papers/franek jenmngs smyth j
da06.pdf.

Karp, R. and M. Rabin, 1987. Efficient randomized
pattern-matching algorithms. IBM J. Res. Develop,
31 (2 249-260. DOL 10.1145/359842.350859.
http: /Awww.research.ibm.com/journal/rd/31 2/ibmrd3
102P.pdf.

Kim, S. and Y. Kim, 1999. A fast multiple string-pattern
matching algorithm. In Proceedings of the 17th
AoM/TAoOM Int. Conf. Comput. Sci., San Diego,
CA, 17 (1) 44-49. Aug 6-8. DOT: 10.1.1.36.8337.
http://eiteseerx.1st. psu.edu/viewdoc/summary ?doi=
10.1.1.36.8337 &rep=repl &type=pdf.

Knuth, D., J. Morris and V. Pratt, 1977. Fast pattern
matching in strings. STAM J. Comput., 6 (2): 323-350.
DOI: 10.1137/0206024. http:/locus siam.org/fulltext/
SICOMP/volume-06/0206024.pdf.

23

Lecrog, T., 2007, Fast exact string matching algorithms. J.
Inf. Process. Lett., 102: 229-235. DOT: 10.1016/.ipl.
2007.01.002. http: //www sciencedirect. com/science?
ob=ArticleURL& udi=B6VOF-4MX56KX-1&
user=10& rdoc=1& fmt=& orig=search& sort=d&
view=c& acct=C000050221& version=1& urlVersi
on=0& userid=10&md5={69c8886¢01360138bc08R1
b88e2ed00.

Navarro, G. and K. Fredriksson, 2004. Average complexity
of exact and approximate multiple string matching. T.
Theor. Comput. Sci.,321: 283-290. DOL: 10.1016/).tcs.
2004.03.058. http: //www sciencedirect. com/science?
ob=ArticleURL& udi=B6V1G-4C477DB-7& user=1
0& rdoc=1& fmt=& orig=search& sort=d&view=
c& acct=C000050221& version=1& urlVersion=0
& usend=10&md5=5249793e4610dd0fdd94e0c821
77f2a.

Sheu, T.F., N.F. Huang and H.P Lee, 2008. Hierarchical
multi-pattern matching algorithm for network content
ispection. I. Inform. Sei., 178: 2880-2898. DOL: 10.
1016/].ins.2008.03.006. http:/portal.acm.org/citation.
cfm?id=1374858.1375197.

Watson, B., 2002. A new regular grammar pattern
matching algorithm. J. Theor. Comput. Seci.,
299: 509-521. DOT: 10.1016/80304-3975(02)00532-7.
http:/fwww. sciencedirect.com/science? ob=Article
URL& udi=B6V1G-47P1XCF-2& user=10& rdoc=
1& fmt=& orig=search& sort=d&view=c& acct=
CO00050221 & version=1& wurlVersion=0& userid=
10&md5=4769641 6d68adcOcas1 51587 2e6d132¢.

Watson, B. and R. Watson, 2003. A Boyer-Moore-style
algorithm for regular expression pattern matching. J.
Sci. Comput. Prog., 48: 99-117. DOT: 10.1016/30167-
6423(03)0001 3-3. http://portal .acm.org/citation.cfm?
1d=947951.

Wu, Y.C.,J.C. Yang and Y.S. Lee, 2007. A weighted string
pattern matching-based passage ranking algorithm
for video question answering. J. Expert Syst. Applic.,
34: 2588-2600. DOL 10.1016/.eswa.2007.04.008.
http://www . sciencedirect.com/science? ob=Article
URL& udi=B6V0O3-ANGRRSN-3& user=10& rdoc=
1& fmt=4& orig=search& sort=d&view=c& acct=
000050221 & version=1& urlVersion=0& userid=
10&md5=877e1320c¢56a662a53087745c¢f0fb289.

