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Abstract: Water resource policy formulation proves complicated because water management systems generally
contain numerous sources of stochastic uncertainty. Simulation-Optimization (SO) methods, which incorporate
system uncertainties using probability distributions, have been used for optimization in environmental
plamming. In this study, it will be shown that, m addition to function optimization, SO can be extended to
formulate multiple policy alternatives meeting required system criteria-an approach referred to as Modelling to
Generate Alternatives (MGA). Unfortunately, while SO holds considerable potential for application to a wide
range of stochastic problems, its solution search times are, themselves, stochastic and vary considerably from
one implementation to the next. Consequently, additional concurrent techmiques will be presented to
significantly reduce SO search times. The efficacy of this MGA approach for policy formulation 1s illustrated
using a specific water resource management case study. Of significance is that, since SO techniques can be
adapted to many disparate problems containing significant sources of uncertainty, the practicality of this
approach can be extended to many other policy formulation applications, which contain stochastic system
components.
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INTRODUCTION

Policy formulation problems involving water
allocation have challenged water resource managers for
decades. Water allocation becomes a controversial and
conflict laden process when the competition between
multiple water-users, such as municipal, industrial and
agricultural sectors, intensifies. Recently, shrinking water
supplies combined with mcreased population slhufts
have magnified this type of user competition. This
competition can be expected to be further aggravated if
the concemn for water quantity and quality grows and if
natural conditions become more unpredictable due to
changing climatic  conditions. Poorly planned systems
for allocating water can produce serious problems under
disadvantageous climate and river flow conditions. In
previous eras, increasing water demand was met by
developing new water sources. However, the significant
economic and environmental costs associated with
developing new water sources have made this approach
unsustainable. This has led decision-makers to the point
that unlimited expansion can no longer be the primary

objective in water resources management. Instead, for
optimum water resource allocation, it is more desirable to
improve the existing water allocation and management
systems i a more efficient, equitable and
envirenmentally-benign manner by developing mnovative
envirommental policy formulation techmques for water
allocation under various complexities.

However, environmental policy formulation
processes can prove to be exceedingly complicated,
because the components of these systems generally
contain significant degrees of stochastic uncertainty. This
stochastic uncertainty renders most
optimization solution methods relatively unsuitable for
practical implementation. To incorporate data uncertainty
into optimal environmental planning, two planning studies
implemented the techniques of Simulation-Optimization
(SO) (Yeomans et al, 2003) and Interval-Parameter
Fuzzy 2-Stage Stochastic  Programming (IPFTSP)
(Magsood et al., 2005). SO directly incorporates inherent
system  uncertainties  expressed as  probability
distributions (Fu, 2002; Kelly, 2002), while IPFTSP
provides a computationally  efficient optimization
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technique in which system uncertainties can be
represented by interval estimates (Huang ef al, 1994a,
1994b, 1998).

Because its search procedures involve probabilistic
processes, a major difficulty experienced by SO is the
length of time required for its solution search to converge
to optimality (Lacksonen, 2001). While, optimization-
based techmques can generally only create single best
solutions to problems, from an environmental policy
formulation perspective it is often preferable to generate
several alternatives that provide multiple different
perspectives to the same problem. Preferably, these
alternatives would possess near-optimal objective
measures, but would differ from each other in terms of the
system structures characterized by their decision
variables. In response to this option-generation
requirement, several approaches collectively referred
to as Modelling to Generate Alternatives (MGA) have
been developed (Baetz et al., 1990; Brill et al., 1982,
Chang et al, 1982; Gidley and DBari, 1986
Rubenstein-Montano et al., 2000). Policy makers, would
then perform a subsequent comperison of these
alternatives to determine, which option most closely
satisfies their disparate goals and specific circumstances.

Yeomans (2002) demonstrated that SO could be used
to generate multiple policy options that would never have
been  considered by  decision-makers,  while
simultaneously  mtegrating stoachastic system
uncertainty directly into each generated alternative.
Therefore, SO can be used to circumvent the naturally
myopic design tendencies of policy-makers with a formal
MGA mechanism for generating numerous policies that
would not have been considered otherwise. Yeomans
(2003) and Linton et af. (2002) have shown SO to be an
effective MGA techmique in environmental policy
formulation. Unfortunately, other research has shown that
the stochastic aspects of 3O’s solution time can severely
and negatively impact its results and that the solution
quality for any given problem can vary considerably
from 1 implementation of SO to another (Fu, 2002,
Kelly 2002; Lacksonen, 2001 ). Since, the solution time of
SO impacts negatively on its ability to determine single
optimal solutions, this difficulty clearly extends into its
extension as an MGA procedure. Huang et al. (2005) and
Yeomans (2007) have proposed different approaches to
umprove the search times and solution quality of SO. In an
attempt to improve the SO process, these approaches are
combined with the interval-parameter fuzzy 2-stage
stochastic programming method (IFTSP) provided by
Magsood et al. (2005). In this study, 1t 1s illustrated how
these approaches in combination with TFTSP impact the
MGA capabilities of SO by using the water allocation case
study presented in Magsood et al. (2005).
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EVOLUTIONARY SIMULATION-OPTIMIZATION
FOR FUNCTION OPTIMIZATION

S0 1s comprised of a broadly defined set of solution
approaches that combine simulation with some type of
optimization method for stochastic optimization (Fu, 2002;
Law and Kelton, 2000). In SO, all unknown objective
functions, constramts and parameters are replaced by
1 or more discrete event simulation models in which the
decision variables provide the settings under, which the
simulation 1s performed. As simulation 13 computationally
intensive, the optimization component 1s used to guide
the solution search through the problem’s feasible region
using as few simulation runs as possible. One approach
18 to use an evolutionary algorithm as the optimization
module. Evolutionary, SO maintains a population of
candidate solutions throughout its execution and consists
of 2 alternating phases; an evolutionary module and a
simulation module. The evolutionary module considers
the entire population of solutions during each generation
of the search and evolves from the current population to
a subsequent ane. Because of the system’s stochastic
components, all performance measures are necessarily
statistics calculated from the responses generated in the
simulation module. The quality (or fitness for survival) of
each solution in the population is found by having its
performance criterion, F, evaluated by simulation. After
simulating each candidate solution, the respective fitness
values are retuned to the evolutionary module to be
utilized in the creation of the next generation of candidate
solutions. The fitness of each candidate solution within
the population is ranked in comparison to every other
candidate solution. These fitness measures are inputs to
the evolutionary module where the next population of
candidate solutions is created by an evolutionary
algorithm. The evolutionary module evolves the system
toward improved solutions in subsequent populations
and ensures that the solution search does not become
fixated at some local optuna. After generating a new
candidate solution set in the evolutionary module, the
new population is returned to the simulation module for
comparative evaluation. This alternating, 2-phase search
process terminates when an appropriately defined stable
system state has been attamed.

MODELLING TO GENERATE ALTERNATIVES
WITH SIMULATION OPTIMIZATION

SO provides a mechamsm for generating multiple
policy options that might never have been considered
by decision-makers, while simultaneously mtegrating
uncertainty directly into each generated alternative
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(Yeomans, 2002). As described, evolutionary algorithms
maintain a population of solutions throughout their
searching phase. FEach solution in a population
corresponds to one specific policy option and, therefore,
the population of candidate solutions represents an
entire set of policy alternatives. When, evolving from
ane population to a subsequent one, relatively weaker
candidate solutions within a population become
progressively replaced by better solutions in an
evolutionary swrvival-of-the-fittest analogy (Holland,
1992). Therefore, upon completion of its search, SOs final
resident population would necessarily correspond to a
highly fit population. This final, fit population
corresponds to a set of good policy alternatives that
could be considered for actual implementation. Hence, SO
actually formulates a collection of good solution
alternatives for planning mn addition to having determined
its best solution and can therefore be considered a de
facto MGA technique.

USING PENALTY FUNCTION
MINIMIZATION TO IMPROVE SO

In SO, the feasibility of each candidate solution is
assessed during the simulation analysis performed on the
current population and, in hard-constrained optimization
situations, any solution not satisfying the stated
constraints has to be discarded. Gendreau (2002) has
indicated that evolutionary algorithms, in general,
(those that do not include a simulation component during
their search) expend considerable computational effort in
correcting the many infeasible or meaningless solutions
that tend to be created by their evolutionary operators.
However, incorpeorating infeasibilities via penalty
functions reflecting degrees of constraint violation can
rapidly force evolutionary searches toward more
preferable solutions. For constrained deterministic
optimization problems, Holland (1992) suggested
implementing penalty-functions to reflect the degree of
solution violation. Yeomans (2007) has shown how the
penalty function approaches from discrete optimization
can be extended into SO. Incorporating infeasible
solutions into the search population via these penalty
functions forces the evolutionary search to proceed
toward more preferable feasible scenarios in order to
reduce the negative impact from the penalties, while at the
same time reducing the computational burden required in
having to evaluate and discard infeasible instances.

USING INTERYVAL PROGRAMMING
TO IMPROVE SO

Because stochastic system problems contain many
possible solutions, solution quality can be highly variable
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unless, an extensive search has been performed
throughout the problem’s entire feasible domain.
Evolutionary methods are conducive to such extensive
searches because the set of candidate solutions in their
populations permit searches to be undertaken throughout
multiple sections of the feasible region, concurrently.
However, since evolutionary search procedures are
probabilistic, the major difficulty experienced by SO has
been the length of time required for it to converge to
optimality (Fu, 2002; Lacksonen, 2001). SO searches
commence from their mitial population and then evolve
from one population to subsequent ones. In general,
initial populations have been randomly generated for
numerous justifiable reasons (Holland, 1992). However,
Reeves (1993) suggested that a directed generation of an
initial population can sometimes prove more efficient than
this  traditional random approach in accelerating
solution convergence. If a computationally efficient
method exists to generate a good starting population,
then this population can potentially direct solution
searches into more preferable regions of a large feasible

domain;  thereby producing better solutions faster
(Huang et al., 2005).

One computational technique is TFTSP, the
interval-parameter fuzzy two-stage stochastic

programming method that Magsood ef al. (2005) applied
to water resources planning systems under uncertainty.
The TFTSP model is derived by incorporating the
concepts of mterval-parameter and fuzzy programming
techniques into a two-stage stochastic optimization
framework. The TFTSP approach holds two advantages in
comparison to other discrete optimization techniques that
must incorporate stochastic uncertainties. Firstly, TFTSP
enables the ability to reflect uncertainties expressed not
only by possibility and probability distributions but also
by discrete intervals. Secondly, IFTSP enables a linkage
to be made with previously defined policies that must be
respected, when analytical solution procedures are used.
In the modeling formulation, penalties are imposed when
policies expressed as targets are violated. In its solution
algorithm, the IFTSP model s converted mto two
deterministic submodels, which correspond to the lower
and upper bounds for the desired objective-function
value. Interval solutions, which are stable m the given
decision space with associated levels of system-failure
risk, can then be obtained by solving the two submodels
sequentially.

The developed models provide solutions that are
expressed as stable interval solutions with different risk
levels i the pre-established criteria. Because of its
inherent efficiencies, it would be feasible for the IPFTSP
described in Magsood et al. (2005) to be used to rapidly
generate this requisite good nitial population from which
to start SO (Huang et al., 2005).
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FORMULATING ALTERNATIVES WATER
RESOURCE POLICIES: CASE STUDY

As described above, it might prove possible to
improve SO optimization by including penalty functions
and initial population biasing. The case study of water
resources management from Magsood ef al. (2005), will be
used to directly 1llustrate how these function optimization
improvements can be extended into. Obviowsly every
solution difficulty encountered by SO in its function
optimization role carries over when it 1s used as an MGA,
policy formulation method. Huang and Loucks (2000) and
Magsood et al (2005) examined a water resources
management case study for allocating water in a dry
season from an umregulated reservoir to 3 categories of
users: a municipality, an mdustrial concern and an
agricultural sector. The industrial concern and agricultural
sector were undergoing significant expansion and needed
to know how much water they could expect to receve. If
msufficient water were available, they would need to
curtail their expansion plans. If the promised water was
delivered, it would contribute positive net benefits to the
local economy per umt of water allocated. However, if the
water was not delivered, the results would reduce the net
benefits to the users. Included within these decisions was
a determination of which one of the multiple possible
pathways that the water would flow through in reaching
the users. It was further possible to subdivide the various
water streams with each resulting substream sent to a
different user.

Since, cost differences from operating the facilities at
different capacity levels produced economies of scale,
decisions had to be made to determine how much water
should be sent along each flow pathway to each user
type. Therefore, any single policy option was composed
of a combination of many decisions regarding which
facilities received water and what cuantities of water
would be sent to each user type. All of these decisions
were compounded by overriding system uncertainties
regarding the seasonal water flows and their likelihoods.

Consequently, the case problem considered how to
effectively allocate the water to the 3 user groups in order
to achieve maximum net benefits under the elements of
uncertainty present and how to incorporate water policies
in terms of allowable amounts within this planning
problem with the least risk for causing system disruption.
Since, the uncertainties were expressed collectively as
mterval estumates, probability distributions and fuzzy
membership functions and a link to a predefined policy
was desired, Magsood et al. (2005) improved upon the
earlier solution in Huang and Loucks (2000) by solving
this planmng problem with their IFTSP approach. For the
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water resource system, a solution that would never
produce a net benefit lower than $2.02 million was
constructed.

As described 1n earlier sections, optunizing this
problem with SO required running the procedure to find
the meximum systemn net benefit and the resulting terminal
population provides the set of policy alternatives
determined by SO i its capacity as an MGA procedure.
To accelerate the search times and to improve solution
quality, both penalty function mimimization and IPFTSP
were integrated into the process (Huang et al., 2005). This
adaptation was accomplished with two modifications to
the original model. Firstly, IPFTSP was used to generate
the initial starting population and secondly, the original
hard-constrained SO model was re-formulated to penalize
any candidate solution lying outside the constraint limits.
After incorporating these two modifications, six separate
computational experiments were undertaken to compare
the relative MGA performance of the reformulated
penalty-function/IPFTSP SO to the original hard
constrained-SO  approach. Tnitial populations of size
twenty were created by random generation for
constrained-SO and by TPFTSP for the penalty-function
procedure. Both procedures were run for fixed time
intervals of 30 and 90 min. Recognizing that constrained-
SO might expend considerable computational effort in
creating and discarding infeasible solutions, a third time
period was included that required the search to evolve
through exactly fifty population generations. Each
experimental setting comresponded to one specific
combination of: the two different SO solution procedures
and the three different time periods. A distinct set of
policy options was generated for each of the 6
computational experiments. Upon termination, the entire
surviving population would represent the set of 20
different policy options generated for water resources
management within the region.

Table 1 contrasts the values of the net benefit
objectives for each of the twenty policy options in the
terminal populations under the six respective experimental
settings performed. The lack of variability within each
penalty constrained-SO column indicates that all solution
benefits fall within similar ranges, indicating that these
populations are comparatively equivalent from a net
benefit standpoint. Conversely, a detailed examination of
the resulting decision variables produced by penalty
function/TPFTSP SO indicated that most of these options
provided system structures that were quite distinet from
each other. From a practical perspective, this finding
demonstrates that penalty function/IPFTSP SO can
generate considerably more higher benefit policy
alternatives than the limited number of options that
might be produced by a planner using an optimization
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Table 1: Minimum system benefits ($ Millions) for the 20 solutions in terminal populations. Benefits have been sorted in non-increasing order

S0 procedhre: Penalty finction Constrained SO

Penalty finction

Constrained SO Penalty function Constrained SO

starting solution: IPFTSP random IPFTSP random IPFTSP random
sohition time: 30 min 30 min 20 min 20 min 50 iterations 50 iterations
Solution number

1 2.290 2.078 2.399 2.081 2.380 2.075
2 2.289 2.077 2.395 2.080 2.367 2.070
3 2.288 2.077 2.391 2.078 2.335 2.069
4 2.286 2.076 2.387 2.078 2.256 2.065
5 2.281 2.075 2.346 2.076 2.289 2.062
6 2.281 2.074 2.343 2.076 2.288 2.062
7 2.281 2.074 2.343 2.076 2.283 2.061
8 2.281 2.074 2.339 2.076 2.281 2.061
9 2.281 2.073 2.339 2.075 2.280 2.061
10 2.281 2.073 2.331 2.075 2.197 2.061
11 2.181 2.072 2.328 2.074 2,178 2.061
12 2,180 2.071 2.328 2.072 2171 2.061
13 2.180 2.070 2.324 2.072 2171 2.061
14 2,179 2.070 2.305 2.072 2.160 2.061
15 2179 2.070 2.301 2.072 2.158 2.061
16 2,179 2.070 2.301 2.072 2.152 2.061
17 2.078 2.070 2.294 2.072 2.148 2.061
18 2.077 2.069 2.283 2.071 2.104 2.060
19 2.076 2.069 2.279 2.071 2.100 2.060
20 2.076 2.069 2.264 2.071 2.097 2.060

technicue. Since, each alternative provides different water
resource policies within the system, this leads to different
utilizations of the various facilities in the region. In its
MGA capacity, SO has produced 20 different policy
alternatives  possessing  the  requisite  system
characteristics with each option providing a different
planming perspective. It should be noted that all 20
alternatives mn each penalty function/IPFT SP setting have
system benefits that are at least $70,000 higher than the
existing municipal system. Because each alternative
represents a distinet policy option of system utilization
and every one of these options possesses a net benefit
that is higher than the existing policy, this clearly
indicates that SO has created an entire set of unproved
policies for water management in the region.

The constrained-SO columns m Table 1 show the
solution alternatives created, when starting from randomly
generated initial populations. In comparison to penalty
function/IPFTSP, the constramed-SO populations exhibit
considerably smaller varability m net benefits,
representing a significantly less diverse set of policy
options for the planners to choose from. The best net
benefit of essentially all of the solutions found m these
populations are lower than the worst solutions produced
by the TPFTSP starting point and the lower benefit
solutions are considerably lower. Therefore, it appears
quite apparent that the general solution quality for the SO
procedure begirming from a random 1nitial population has
deteriorated substantially in comparison to having the
same procedure commence from a TPFTSP generated
population. Evaluating the population characteristics from
Table 1 from a search time perspective highlights certain
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other differentiating features between the SO approaches.
For the 30 and 90 min search times, penalty-
functio/IPFTSP produced vastly superior populations
than constrained-3SO. While, the two populations
generated by penalty-function/TPFTSP resemble each
other in both time periods, in constrained-SO the 90 min
search produced a superior population relative to the
30 min search. In the 50-generation experiment, penalty-
function/TPFTSP produced a similar population to its
30 min trial. Most significantly, the 50 generation
comstramned-30 experiment demonstrated considerable
solution improvement over its 30 and 90 min rums;
providing alternatives that appear comparable in value
to the penalty-function/IPFTSP solutions. However, an
extremely important observation from the 50 generation
experiments was that constramed SO required mn excess
of 3h to iterate through its 50 generations, while penalty-
function/TPFTSP  took only 45 min. Hence, this
experimentation reveals that longer solution searches in
constramed SO produce markedly superior populations
and that penalty-function/TPFTSP produces better
populations than constrained SO in much shorter time
spans.

Table 2 summarizes the single, best objective values
obtained under the indicated settings. The table indicates
that the constrained SO solutions improve with longer
search times and that the 3 b, 50 generation experiment
produced a solution within $300,000 of optimality. In stark
contrast, all of the penalty function/TPFTSP experiments
produced near optimal solutions with the 30 min and
50 generation runs within $100,000 of the best known
solution and the 90 min trial achieving optimality. These
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Table 2: Optimum net benefits (in millions of $) for the existing system
Solution search time

S0 method and starting

Condition employed 30 min 90 min 50 Iterations 24 h
Constrained 8O and

random starting solution 2.078 2.081 2.075 2.378
Penalty function SO and

TPFTSRP starting solution 2.290 2.399 2.380 N/A

findings confirm the search time benefits of penalty
function/IPFTSP in that the 30 min trial produced a
solution costing $200,000 more than the 3 h constrained-
SO trial. Analogously to issues surrounding solution
quality, it had been mentioned that the search times of
evolutionary methods are stochastic. Commencing
constrained SO from random starting points should
produce solutions comparable to penalty-function/
IPFTSP if longer search periods had been permitted. To
llustrate tlus  phenomenon, an additional 24 L,
constrained SO experiment was performed and the last
column of Table 2 shows the best solution found from
this extended tine experimentation The solution
demonstrates a dramatic value improvement, when
contrasted against the earlier results and suggests that
with extended search times, the best solutions found by
constrained-3O do, mdeed, become comparable to

penalty-function/IPFTSP SO.
CONCLUSION

Environmental policy formulation 1s an extremely
complicated process that can be impacted by a multitude
of uncertain factors. Any ancillary techniques used to
support policy generation must address all of these
features and must be flexible enough to encapsulate the
mnpacts from the mherent planmng uncertainty.
Concurrently, combining penalty function minimization
together with IPFTSP improved SO’s search time and
solution quality, when solving stochastic problems. It was
shown how SO could be used to efficiently formulate
multiple near best policy alternatives for difficult,
stochastic, environmental problems. Smce, SO techniques
can easily be adapted to a multitude of different types of
stochastic problems, the practicality of this MGA
approach can clearly be extended into many other
planmng containing
significant sources of uncertanty.

environmertal applications
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