M Asian Journal of Information Technology 7 (3): 126-129, 2008
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2008

Impact on Quality Attributes for Evaluating Software Architecture
Using ATAM and Design Patterns

'N. Sankar Ram, ‘B. Rajalakshmi and *Paul Rodrigues
'Department of CSE, Velammal Engineering College, Chennai, Pin code-600 066, Tamilnadu, India
“Department of CSE, A K College of Engineering, Krishnankoil, Pin code-626 190, Tamilnadu, India

Abstract: Architecture evaluation for a large system can be done by using an approach called Architecture
Tradeoff Analysis Method (ATAM). In large system the achievement of quality attributes such as
maintainability, reusability, extensibility, scalability and Stake Holders Expects (SHE) are not full filled in ATAM
approach. This study, presents a system which uses ATAM and design patterns for evaluating the software
arclutecture to identify risk factor and check all the quality attributes have been addressed mn the software. By
combining the design patterns and the ATAM approach for the evaluation of the software architecture would

result in better solutions.

Key words: Software architecture, design patterns, quality attributes, risk factor, ATAM, SHE

INTRODUCTION

The major 1ssue n software development today 1s
quality. The idea predicting the quality of software from
a higher level design description is not a new one. Quality
of software is bound by basis of its architecture
(Kruchten et al, 2006). It 1s recognized that it is not
possible to measwre the quality attributes of the final
system based on SA design. This would imply that
detailed design and implementation represents a strict
projection of architecture. We analyze methods looking
for:

* Their progress towards refinement over time.
» Their main contribution.
* Advantages obtained by them.

Software architecture of a system is defined as “the
structure of structures of the system, which comprise
software components, the externally visible properties
of those components and the relationship among
them” (Bass et al., 2003; Kruchten et al., 2006).

ATAM 15 a method for evaluating architecture-level
designs and 1identifies trade-off poimnts between
attributes, facilities communication between stakeholders
(such as user, developer, customer, maintainer) from the
perspective of each attribute, clarifies and refines
requirements and provides a framework for ongomg,
concurrent process of system and analysis.

We could find that ATAM is a risk identification
mechanism of quality achievement. Normally, ATAM
does not discuss with all possible quality attributes.
Efficiency of ATAM depends on the expertise and
potential of Stakeholders (SH) and quality attributes
(Clements et al., 2002, Shaw and Garlan, 2004; Dobrica
and Niemela, 2002, Cortellessa ef ai., 2007).

RESEARCH BACKGROUND

The Architecture Trade-off Analysis Method (ATAM):
Architecture-based analysis techniques fall into one of
two categories, questioning and measuring according to
whether they offer qualitative or quantitative results. In
complex design situations the effort required to develop
models suitable for quantitative analysis and the
concentration on one quality at the expense of others
tend to dissuade the use of measuring techniques

The adoption of an iterative incremental development
process required a method, which could be used
throughout the systems lifecycle, as well as provide
insight into the design issues and how they relate to the
customer objectives (Dobria and Niemela, 2002;
Kruchten et al., 2006). Consequently, the methods suited
to such an approach are those oriented towards
application from an early point in the design life-cycle as
well as providing the ability to analyze the relationship
between multiple quality concerns and design decisions.
The only methods found to satisfy these conditions

Corresponding Author: Professor N. Sankar Ram, Department of CSE, Velammal Engineering College, Chennai, Pin code-600 066

Tamilnadu, India

Asian J. Inform. Technol., 7 (3): 126-129, 2008

included Software Architecture Assessment using
Bayesian Networks (SAABNet) and the Architecture
Tradeoff Analysis Method (ATAM) (Dobria and Niemela,
2002; Kruchten et al., 2006).

Quality attributes: A quality attribute is a nonfunctional
characteristic of a component or a system. A software
quality represents the degree to which software
possesses a desired combination of attributes. According
to this, there are 6 categories of characteristic
(functionality, reliability, usability, efficiency, main
tainability and portability), which are divided mto sub
characteristic (Kazman et al., 1994; Kruchten et al., 2006).
The quality attributes are defined as:

Expendability: The degree to which arclutectural, data or
procedural design can be extended.

Simplicity: The degree to which a program can be
understood without difficulty.

Generality: The degree to which a software product can
perform a wide range of functions.

Modularity: The degree to which the implementation of
functions in a program are independent from one another.

Modularity at runtime: The degree to which functions of
a program are independent from one another at runtime.

Learnability: The degree to which the code source of a
program 1s easy to learn by new developers.

Understandability: The degree to which the code source
of a program is easy to understand.

Reusability: Reusability here is the degree to which a
piece of design (or a subset of apiece of design) can be
reused 1n another design.

Scalability: Scalability is the ease with which an
application or component can be modified to expand its
existing capacities at runtime.

Robustness: The degree to which an executable program
continues to function properly under abnormal conditions
or circurnstances.

PATTERNS

Each pattem describes a problem which occurs over
and over again in our environment and then describes

the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way twice. An emerging
idea in system development under the process can be
improved significantly if the system can be analyzed,
designed and build from prefabricated and predefined
system components.

Originally, patterns addressed common 1dioms in
the world of object oriented design and implementation.
Patterns can be used in other areas; in particular analysis
paiterns are being used to describe common 1dioms at the
business analysis level.

Generative patterns: These patterns in our minds are,
more or less, mental images of the patterns in the world:
they are abstract representations of the very
morphological rules, which define the patterns in the
world. However, in one aspect they are very different. The
patterns in the world merely exist. But the same patterns
in our minds are dynamic. They have force. They are
generative. They tell us what to do; they tell us how we
shall, or may, generate them; and they tell us too, that
under certain circumstances, we must create them. Each
pattern 1s a rule, which describes what you have to do to
generate the entity which it defines.

Non generative patterns: These are static and passive.
They describe recurring phenomena without necessarily
saying how to reproduce them.

Components

Name It must have a meaningful name.

Problem A statement of the problem which describes
its intent: the goals and objectives it wants
to reach within the given context and forces.

Context The preconditions under which the pattern
is applicable.

Forces A description of the relevant forces and
constraints and how they interact/conflict
with one another.

Solution Static relationships and dynamic rules
describing how to realize the desired
outcome.

Examples : One or more sample applications of the
pattern.

Resulting : It describes the post conditions and

Context side-effects of the pattern.

Rationale : A justifying explanation of steps or rules in
the pattern.

Related The static and dynamic relationships

Patterns between this pattern and others.

Known Describes known occurrences of the pattern

Uses and its application.

Asian J. Inform. Technol., 7 (3): 126-129, 2008

Design patterns: In software engineering, a design
pattern 1s a general repeatable solution to a commonly
occurring problem in software design. A design pattern is
net a finished design that can be transformed directly into
code. It 1s a description or template for how to solve a
problem that can be used in many different situations
(Richard, 1996; Beck, 2007; Freeman et al., 2004). Object-
oriented design patterns typically show relationships and
interactions between classes or objects, without
specifying the final application classes or objects that are
mvolved. Algorithms are not thought of as design
patterns, since they solve computational problems rather
than design problems.

In addition, patterns allow developers to
communicate using well-known, well understood names
for software interactions. Common design patterns can be
umproved over time, making them more robust than ad-hoc
designs. Considering situations where patterns are used
appropriately in a program to solve their corresponding
design problems and assuming that the developers have
a good knowledge of design patterns.

APPLYING PROPOSED METHOD FOR
EVALUATING ARCHITECTURE

Build a search engine for a travel company, which
allows searching the resorts, fitting in the required criteria
and available for booking (Table 1).

Functional requirements:

User enters search criteria (multiple resorts IDs, date
range, multiple resort amenities, multiple region
hierarchy (region/sub-region/market) on the screen
and submits the same.

User defines the result sort order.

System support multiple levels of validations.

User’s access control to execute the search.
Validations of the search criteria.

System executes the search criteria.

System returns the results in the required sort order.
User can drill down on the returned results and get
more details.

Non-functional requirements

Performance of the system is a critical aspect - with 5
million records in the database, the search should
take a maximum of 5 sec.

Recommended technology is J2EE using Weblogic.
Any COTS component can be suggested with proper
justification.

128

Table 1: Sample scorecard for evaluating software architecture features

Requirement Weight Score Total
Book a tour 5 5 25
Rearch for a tourist spot and routes
from South to the spot 5 4 20
Change screen layout to suit
the PDA screens 3 3 9
Portability 4 3 12
Maintainability 3 3 9
Reusability 4 2 8
Extensibility 3 3 9
Scalability 4 2 8
Total 100
[[Mission_]
1 [Architecture]
[Enviromentt——] System | I
Archite

Fig. 1: Architectural description of software intensive
system

Expectations: The stress while defining the architecture
should be on business components and database rather
than presentations. The architecture should identify the
following:

Various layers in the architecture.

Various business components in each layer.
Responsibility of the component.

Data transfer across layers.

Considerations for the performance for each of the
above, as well as database.

Techniques for evaluation and review: Review techniques
can be divided to 2 findamental types:

¢ Questioning technicues.
» Measuring Techmques.

The Questioning techniques are relatively simple
and mclude methods like a general discussion based
qualitative questions, evaluating through question-
naire(s), having a predefined checklist and using it for
review or using some well structured methods such as
scenario based evaluation methods.

The various measuring technicues are more technical
in nature and usually mvolve quantitative methods like
collecting quantitative answers to specific questions,
collecting metrics and through simulation and prototypes.

Figure 1 represents architectural description, by
applying our method, the typical issues that are under
investigations are as follows:

Asian J. Inform. Technol., 7 (3): 126-129, 2008

(a) When using ATAM (b} When using ATAM and design pattern
B 2z
|
1 2 3 4 1 2 3 4
Risk factor Risk factor
(¢} When using ATAM (4} When using ATAM and design patiern
B ;
: |
@ Wi
Y
-
. 2 3 4 1 2 3 4
Risk factor Risk factor

Fig. 2: Performance after applying ATAM amd design patterns

Are all stakeholders considered?

Have all requirements been 1dentified?

Is the architectural solution being provided appears
rationale?

Are the documents well managed?

Is the architectural solution being provided appears
rationale?

The following Fig. 2(a-d) shows the performance after
applying ATAM and Design Patterns.

CONCLUSION

The ATAM 1s the robust method for evaluating
software architectures. Tt works by having these
stakeholders articulate a precise list of quality attribute
requirements in the form of patterns and scenarios and by
lluminating the architecture with respect to our design
patterns. ATAM has proven itself as a useful tool hence
we use the ATAM architecture to integrate the above
mentioned design patterns for better evaluation.

REFERENCES

Bass, L. and P. Clements ef af., 2003. Software architecture
in practice. 2nd Edn. SEI series
engineering. Boston: Addison-Wesley.

in software

129

Beck, K., 2007.
Education, Proceedings of the 18th International
Conference on Software Engineering.

Clements, P. and R. Kazman et al, 2002. Evaluating
software architectures: Methods and case studies.
SEI series in software engineering. Boston: Addison-
Wesley.

Cortellessa, V. and P. Pierini et al., 2007. Integrating
software models and platform models for Performance
Analysis. IEEE. Trans. Software Eng., 33 (6).

Dobrica, L. and E. Niemela, 2002, A Survey on Software
Architecture Analysis Methods. IEEE. Trans.
Software Eng., 28 (7).

Freemarn, Eric and Elisabeth Freeman et al., 2004. Head
First Design Patterns. O'Reilly Media.

Kazman, R. and M. Klein et af., 2000. ATAM: Method
for Architecture Evaluation. Software Engineering
Institute: Pittsburgh.

Kruchten, P. and H. Obbink et ai., 2006. The Past, Present
and Future of Software Architecture. TEEE. Software.

Richard, G. 1996. Patterns of Software: Tales Fram the
Software Commumty. Oxford University.

Shaw, M. and D. Garlan, 2004. Software Architecture.
Perspectives on an Emerging Discipline. Prentice
Hall, India.

Shaw, M. and P. Clements, 2006. The Golden Age of
Software Architecture. TEEE Software.

Implementation Patterns. Pearson

