d Asian Journal of Information Teclnology 7 (11): 484-488, 2008
[SSN: 1682-3915
OQnline

© Medwell Journals, 2008

Modeling Software Reuse in Traditional Productivity Model

E Nwelih and LF. Amadin
Department of Computer Science, Faculty of Physical Sciences,
University of Benin, Benin, Nigeria

Abstract: Productivity 1s expressed as a ratio of output-mput and helps to identify underutilized resources.
Software reuse can be used to increase productivity. In this research, the traditional software productivity
model is remodeled to include reuse and the impact of reuse on productivity is quantified.

Key words: Productivity, model, reuse, traditional, software, remodeled

INTRODUCTION

Software reuse is one of the most promising
approaches for mcreasing productivity. By reusing
existing software or components, one can avoid
downstream costs of maintaining additional code and
increase the overall quality of the software product and
productivity.

To analyze and model productivity, the resource
attributes such as personnel must be considered The
most commonly used model for productivity measurement
expresses productivity as a fraction of the process output
mfluenced by the personnel divided by personnel effort
or cost during the process i.e., productivity is viewed as
a resource attribute and captured as an indirect measure
of a product attribute (Fenton and Pyleeger, 1997,
Pressman, 2001).

According to the Japanese notions of spoilage,
productivity 1s viewed as a measure of how much effort 1s
expended on fixing things that could have been put
right before delivery. Some software engineers compare
the cost of fault prevention with the cost of fault
detection and correction (Fenton et al., 2001). Many
software-engineering methods proposed and developed
i the last 25 years provide rules, tools and heuristics
for producing software products. Almost invariably,
these methods give structure to the products; it is claimed
that tlus structure makes them easier to understand,
analyze and test. The structure mvolves 2 aspects of
development:

* The development process, since certain products
need to be produced at certain stages

¢ The products themselves, since they must conform
to certain structural principal

In particular, product structure 1s usually
characterized by levels of internal attributes such as
modularity, coupling, or cohesiveness. Brooks (1975) and
Youwdon (1979) assumed that good internal structure
leads to good external quality.

This study is concerned with remodeling of the
traditional software productivity model to include reuse
there by quantifying the impact of reuse benefit on
productivity.

Productivity can be defined as a complex attribute of
software and people. Tt is measured indirectly as a
composition of measurable attributes, such as size and
quality.

Software reuse is the use of existing software
artifacts or knowledge to create new software.

Productivity 1s typically calculated as size of the
system divided by cost spent to develop it, for some
measure of size and cost. Keeping the size of a system
constant, increasing productivity will result in a reduction
in cost. This concept of reuse 1s unportant when size 1s
provided as mput to effort, cost and productivity models.
The reuse of software (including requirements, designs,
delimitation, test data, scripts as well as code) improves
our productivity and quality, allowing us to concentrate
on new problems rather than continuing to solve old ones
again. However, traditional notions of productivity,
measured as size of output divided by effort expended,
must be adjusted to accommodate these reuses. We must
include in size measurement, some method of counting the
reused products counting reused code is not as simple as
it sounds. Tt is difficult to define formally what we mean
by reused code. We some times reuse whole programs
without modification (a module, function, or procedure).
And we often modify that unit to some extent. However
we account for reused code, we want to distinguish a

Corresponding Author: E. Nwelih, Department of Computer Science, Faculty of Physical Sciences, University of Benin, Benin,

Nigeria

Asian J. Inform. Technol., 7 (11): 484-488, 2008

module with one modified line from a module with 100
modified limes. Thus, we consider the notion of the extent
of reuse measured on an ordinal scale by NASA/
GODDARDS Software Engineering Laboratory,

Software Productivity Consortium (1995). As follows:

n

Reused verbatim: The code m the unit was reused
without any changes.

Slightly modified: Fewer than 25% of the limes of code in
the unit were modified.

Extensively modified: A 25% or more of the lines of code
were modified.

New: None of the code comes from a previously
constructed unit.

The classification can be simplified and reduced to 2
levels, New (level 3 and 4) or Reused (level 1 and 2). A
typical FORTRAN Project at the Software Engineering
Laboratory include 20% reused line of code, while a
typical Ada project include 30% reused line codes.

The inclusion of previously constructed code in new
software will certainly increase the value of the
productivity equation, but unless the code is executed, we
have no real increase in productivity. Thus, productivity
as a measure defined by the productivity equation fails to
satisfy the repetition condition for measurement.

We can demonstrate this failure as follows: when
measuring programmer productivity,
mdividuals producing specific programs. Suppose that P
is the entity “Emma producing program A”, that it takes
Emma 100 days to complete A and that A 13 5000 lines of
code. According to the productivity equation,
Productivity (P) = 50LOC per day suppose that Emma
adds another copy of program A to the original one, in
such a way that the second copy is never executed. This

enfities and

new program, A, has 1000 LOC but its functionally
equivalent to the old one. Moreover, since the original
version of A was already tested, the incremental
development time 1s nil, so that the total time required to
create A’ 1s essentially equal to the time required to create
A Intuitively, we know that Emma’s productivity has not
changed. However, let P be the entity “Emma producing
program A”. The productivity equation tells us that:
Productivity (P7) = 100 LOC per day.

The significant increase in productivity (according to
the measure) is a clear violation of the representation
condition, telling us that the productivity ecquation does
not define a true measure, 1n the sense of measurement
theory (Fenton et al., 2001; Pressman, 2001).

485

Hewlett-Packard, a market leader in electronics is also
a ploneer in software measurement. In 1983, in response
to the recommendations of a task force that focused on
software productivity and quality, the company set up
teams to address short-term productivity improvement
through tools long-term productivity
improvements through the use of a common development
environment. Hewlett-Packard
engineering laboratory, which in turn created a software
metrics council. The metrics council, representing the
major divisions of the company, proposed a set of metrics
standards that addressed 5 issues. The 5 issues are:

as well as

created a software

Size: Low big 1s the software that 1s produced?

People, time and cost: How much does it cost to produce
a given plece of software and associated documentation?

Defects: How many errors are in the software?

Difficulty: How complex is the software to be produced
and how sever are the constraints on the project?

Communications: How much effort is in

communicating with other entities?

spent

The Metrics recommended addressing the 1ssue:
Size: Non-comment source statements.
People, time and cost: Payroll month.
Defects: Problem or error in the software.

Difficulty: A number between 35 and 165, with 165 being
the most difficult, the number is determined by ensures to
a questionnaire.

Communications: Number of mterfaces that a lab team
project has.

Over time, the defect measurements have expanded
to include number of defect severity, duplicate reports for
the same defect and efficiency of testing defect removal.
Also, user satisfaction has been monitored by looking at
user defect reports and the number of user requests for
enhancement (Fenton et al., 2001; Pressman, 2001). This
helped Hewlett-Packard address the corporate goals
put forth by president Young (1986). Fenton et al
(2001) has reported a significant measurement effort
that addresses the effectiveness of inspections at
Hewlett-Packard describes a quantitative investigation of

Asian J. Inform. Technol., 7 (11): 484-488, 2008

reuse in the corporation. Gaffney and Durel (1989),
reports the effects of reuse on software productivity at 2
divisions of Hewlett-packard. The data were collected
during a formal process called a reuse assessment. By
implementing reuse, the manufacturing productivity
division exhibited a 51% defect reduction and a 57%
increase in productivity. Similarly, the Sam Diego
Technical Graphics division reduced its defects by 24%
and increased productivity by 40% it also reduced time to
market by 42%.

MATERIALS AND METHODS
Examine software reuse model as relates to productivity:
Gafthey and Durek (1989) propose productivity model for

software reuse, which 1s:

P=1/c=1/4(b-1)R+1)

where:

p = Productivity

¢ = Cost of software development for a given product
relative to all new code (for whichc =1)

R = The proportion of reused code in the product

b = The costrelative to that for all new code. b =1 for

incorporating the reuse code into the new product

Using reusable software generally results in higher
overall development productivity; however, the cost of
building reusable components must be recovered through
many reuses.

Favaro (1991) utilized the model from Fenton et al.
(2001) to analyze the economics of reuse. Note at this
point that Fenton ef al. (2001) model is the same as that of
Gaffney and Durek (1989). The relevant variables and
formulas are:

Re=(b+EN) - 1)R+]1

Rp=1/Re
No=E/(1-b)
where:
R = Percent of code contributed by reusable
components
b = Integration cost of reusable component as
opposed to development cost
Re¢ = Relative cost of overall development effort
Rp = Relative productivity
E = Relative cost of making a component reusable
No = Payoff threshold value (number of reuses needed

to recover all component development cost)

Favavro’s research team estimated the cuantities R
and b for an Ada-based development project. They found
it difficult to estimate R because it was unclear whether to

486

measure source code or relative size of the load modules.
The parameter b was even more difficult to estimate
because it was unclear whether cost should be measured
as the amount of real-time necessary to install the
component in the application and whether the cost of
learning should be included.

Poulin (1995) present a set of metrics used by IBM
to estimate the effort saved by reuse. Although the
measures used are similar to the productivity model of
Gaffney and Durek (1989). Poulin named the metrics from
a business perspective and they provide a finer
breakdown for some calculations. For example cost 1s
broken down into development cost and maintenance
cost.

RSI

0 100%
(RSI+SSI)

Product reuse percent =

Development cost avoidance = RSTx 0.8 (new code cost)
Service cost avoidance = RSIx (error rate)

Reuse cost avoidance = Development cost avoidance +

Service cost avoidance

Reuse value added = (8SI+RSI+SIRBO)
381
Additional development cost = (relative cost of reuse ') x
code wiitten for reuse by other
xnew code cost
where:
SST = Shipped Source Tnstructions
CSI = Changed Source Instructions
RSI = Reused Source Instructions
SIRBO Source Instructions Reused by others
Cost per LOC = Software development cost
Error rate = Software development error rate

Cost per error Software error repair cost

RESULTS AND DISCUSSION

Proposed software productivity model that includes
reuse: The following are the existing model description of
the current model as it obtains productivity measure.

LOC produced
Person months of effort

Productivity =

Productivity can also be measured as some form of:
amount of output/effort nput (Fenton and Pyleeger,1997).

Asian J. Inform. Technol., 7 (11): 484-488, 2008

The general notion is an economic one, where businesses
or markets are judged by comparing what goes in with
what comes out.

The output (LLOC produced) is the final product: The
input (person month of effort) is the number of person

month used to specify, design code and test the software.

Productivity = Size/effort size related measure
(Fenton and Pyleeger, 1997)

No. of functional points implanted

Productivity = Porsonmonths

Function-related measure (Abrecht and Gaffney,
1983; Pressman, 2001).

The process of using these models without the
consideration of reuse 18 a problem. In Nigena for
instance, with special references to IT industry, this
traditional method involved with management assessment
of programmer productivity process contain certain draws
back on the system. So based on all the issues raised
above, we now decided to model productivity to include
reuse as shown in Fig. 1.

Reuse: Assuming that 1% of the objects will be reused
from previous projects.

New object points = (Object pollggs)x (100-r)

Length: Total length (LOC) NCLOC + ClOC Density of
comments in a program = CLOC/LOC (Fenton et af., 2001).

Functionality: Unadjusted function point count (UFC)

s}
UFC =¥ ((No. of items of varietyi) weight)

i=1

Technical Complexity Factor (TCF) = 0.65+0.01 (sum (F1)).

The factor varies from 0.65 (if each Fi is set to 0) to
1.35 (if each Fi 1s se to 5) (Fenton et al., 2001) the final
function point calculation is:

FP=UFC % TCF
Complexity: Big C notation (n,n’ nlogn, nlogn® ¥ where a

and b are constant mode s 1s size measured in thousands
of delivered sources mstructions (KD SI).

Reuse
Metrics
—— Length
Size— Functionality ——
Productivi
ey Complexity
Effort

Fig. 1: Productivity model including reuse

Note: LOC = Lmnes of code. CLOC = commented line of
code (Line of code is used not as a measure of length but
as a measure of effort, utility, or functionality).

s+ + 1 +e))

Productivity = 2
1=1 2 i

where

r, = Reuse

F, = Functionality

L, = Length

% = Effort

¢, = Complexity
CONCLUSION

In thus research, we looked at reuse as an important
aspect of productivity, when size is provided as input to
effort, cost and productivity model. Appling reuse,
software productivity cost appears to be quite large. With
the reuse model stated in this study, productivity measure
becomes effective.

REFERENCES

Abrecht, A. and J. Gaffney, 1983. Software function,
source lines of code and development effort
prediction: A software science valiation. IEEE. Trans.
Soft. Eng., Se-9 (6): 639-648. www.informatik um-
trier.de/~ley/db/indices/a-tree/a/ Albrecht: Allanj=
html-4k.

Brooks, F., 1975. The Relationship Between Software
Development Team Size and Software Development.
ACM, 52(1): pp: 141-144. 1ablog.sybase.com/paulley/
2009/01 /ffred-brooks-is-still-right/-32k.

Favaro, J., 1991. What Price Reusability? A Case Study.
Ada Lett. (spring), pp: 115-124. Frakes.CS.vt.edu/
6704506.htm-12k.

Asian J. Inform. Technol., 7 (11): 484-488, 2008

Fenton, N.E. and S.I. Pyleeger, 1997 Software
metrics a rigorous and practical Approach.
Chapman and Hall, London. www2.umassed.edu/

SWPL/processBiblogr-aphy/bib-measurement. html-
11k.

Fenton, N.E., M. Neil and D. Marquez, 2001. A New

Bayesian Network Approach to Relibility Modelling.

www.agenarisk. com/resources/technology-articles/
MMR_A%20new% 20BN %2 0approach%20to%20R
elibility%20mod.

Gaffney, J. and T. Durek, 1989. Software Reuse-Key
to enhance Productivity: Some quantitative
models. Inf. Sofware Technol., 31 (5). 258-267.
Archive nyu.edwbitstream/2451/14190/3/15-97-
32.pdf xt-89k.

488

Poulin, I.8., 1995. Populating Software Repositories:
Incentives and Domain-Specific Software. J. Syst.
Software, Elsevier Science, New York, 30 (3): 187-199.
http://citeseer.1st. psu.edu/poulin94populating html.

Pressman, 2001. Software Engineering a Practical
Approach. Loadingvault.com/search.php?q=
softwaretengineering+roger+pressman-tsolution+
manual-28k.

Yourdon, EN., 1979. Classics in Software Engineering.
Yourdon Press. portal.acm.org/citation.cfm?id=
1010904.1010910.

Young, R.A., 1986. Sunulation of Human Retinal Function
with the Gaussian Derivative Model. CVPR,
pp: 564-569. Line:ee hawil edu/~treed/ispg/DGT
demo/ref html-3k.

