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Symmetric Extended Wavelets and One Dimension Schrodinger Equation
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Abstract: Tn this research, we present a numerical solution for schrodinger equation. This method is based on
generalized Legendre wavelets and generalized operational matrices. Generalized Legendre wavelets are a
complete orthogonal set on the interval [-s, s] (s is a real large positive number.) The mother function of
generalized Legendre wavelets are generalized legendre functions. Generalized Legendre functions are an
orthogonal set on the interval [-s, 8]. The schrodinger equation is equal to a variational problem and we convert
the variational problem to a non linear algebraic equations. From the solving of algebraic equation to get the
eigen-states of schrodinger equation. We applied this method to one dimension nonlinear oscillator (V(x) =
1/21ex?, —eo <x <loo) and to get the eigen-states of oscillator for various n. For n = 2, the oscillator is linear and there
is an exact solution for its. The results for n = 2 demonstrate the validity of this solution.

Key words: Schrodinger equation, wavelets, operational method, one dimension, symmetric extended

INTRODUCTION

Orthogonal functions and polynomial series have
received attention in dealing with various problems of
dynamic systems. The orthogonal functions and
polynomial series reduce these problems to those of
solving a system of algebraic equations. For example,
special attention has been given to applications of Walsh
functions (Chen and Hsiao, 1975), block pulse functions
(Hwang and Shih, 1985), Laguerre polynomials (Hwang
and Shih, 1985), Legendre polynomials (Chang and Wang,
1983), Chebyshev polynomials (Horng and Chou, 1985)
and Fourier series (Razzaghi and Razzaghi, 1988).
Legendre functions is an orthogonal set on the [-1, 1].
Legendre functions satisfy Legendre differential equation
and it is covered in many textbooks of mathematical
physics (Arflen, 1985). One of the most applications of
Legendre functions is in differential calculus. The
Legendre wavelets are defined over [0, 1]. Legendre
wavelets can be used for variational problems (Razzaghi
and Yyousefi, 2000, 20014, b). Legendre wavelets can be
used for two dimension variational problems (Parsia,
2005). In this study, we want to represent a generalized
Legendre wavelets. Then, we get an operational matrix of
integration and another operational matrices for them. Tn
final to present a numerical solutions for time independent
schrodinger equation.

GENERALIZED LEGENDRE FUNCTIONS

In recent years, wavelets have found their way in
many different field of sciences and engineering.

Wavelets constitute a family of functions that

constructed from dilation and translation of a single
function. Legendre wavelets is proposed by Razzaghi and
Yousefi (2000, 2001a, b) for solving variational problems.
The mother function of Legendre wavelets 1s Legendre
functions. In this here, we define generalized Legendre
wavelets by generalized Legendre functions. Generalized
Legendre functions satisfied the differential equations
below,

(s2 —xX W) - 2xy'(x)+n(n+ Dy(x) =0 (1)

The solutions of late equation are an orthogonal set
over [-s,5]. We choosing

y(x)= chxl

and substituting y(x) in (1), easily find
Byls;ix)=1
Bsx)=x
P, (s: _1 2 2
(%) = 137 - s%)
Py(s;%) = %(5){3 - 352x)
Pyls:x) = §(35X4 —30s%x% + 334)
Bi(s;x)= %(63){5 — 708> + 15S4X)

Pe(s:x) = L (231x° - 3155%x* + 1055%x% - 55%)
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Differential representation of generalized Legendre
functions can be obtain from (2)

! (x sy (2)

P {(s;x)=
(5 2"n!dx"

The generalized Legendre wavelets to be defined

Wy (%)=
X _
}22:?;11 27P, (5,25 x—(Zn-1)s) zg—kzsix<i—gs (3)

0 otherwise

In which we definen=-2%"+1,-25' +2,...,0.1,...2"  and
m = 0,1,2,.. M-1. Generalized Legendre wavelets are an
orthogonal set such that

8
j Wa,m S0 (8:X)dX =8y 8y o “4)

—8

We represent two operational matrices for Legendre
wavelets such that

t
J.‘P(s;x)dX: P-¥(s:x) (5

s x)=T-V(s;x) (©)

In which P(s;x), P and I are defined for generalized
Legendre wavelets as below:
The matrix column P{s;x) is a 2% Mx1 dimensicn that
defined as

P00y oSOV gy 60,

. . T
. W_Zk—l+2’0 (8% )5 Wok-1 M-1 (5:3)]

The P matrix is a 25 Mx2* M matrix as below

L F F F

O L F F
P=2l0 O L F
2. -

00O L

i1 which O, F and L are M>M matrices. The O 1s null
matrix and F and L. defined as

971

2 0
000
F={0 0 0 — 0 (&)
0 00 0
And
1
1 5 0 0
_1
5 0 0 0
L=| ° 0 0
0 0 0 !
IM-342M-1
0 0 - L 0
TM-3+2M-1
(9)
The 2 Mx2* M dimensions cperational matrix I is
U, O o - 0
O Uy, O O
_ s 10
r== o O U, o | a0
O o) o) Uy,
While U, is a M>M matrix given by
1
n N 0 0
1
N n 0 0
U,=| : (11)
0 0 n M1
IM-3+42M-1
0 0 M1 n
IM-3+2M-1
NUMERICAL SOLUTION

The time independent schrodinger equation is a
Fundamental equation of quantum mechanics (Tohn and
Powell, 1961). That is

Huys, (%) = B, () (12)

subject to constraint P, (+e=) = 0. In which H = -1n*/2m
d*/dx* +V(x) is a hamiltenian of system, ¥, (x) and E, are
wave function and energy state of system.

This 18 equal to the varation problem. The extremum
of quantity
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Table 1: Energy states of various oscillator Vx)=12kx* n=2fors=6, k=3, M =3

Number of state Energy state (n=2) Energy state (n=4)

Energy state (n=6) Energy state (n=8)

1 1.001%4 1.058941 1.144552 1.232409
2 3.00384 3.820008 4.474100 5.031860
3 5.04701 7798936 10.152810 12.480238
4 7.10115 12.625725 18.023182 25.217360
5 9.20016 19.019775 29.186824 45.072125
hg Table 2: Energy states of simple harmonic oscillator for s =6, k=13,
E, =<y, () [H|yj (%) >= — <y (x) M=3
n 1 | ‘ 1 2m n (13) Number Wavelet FExact Error
of state solution (heo/2 solution (heo/2 ercent
| Wa () > + <y ()| V) | wy (%) > ‘ soution (/) — (petcent)
2 3.00384 3 0.00128
subject to the constraint <%, (x)| ¥, (x)» = 1. For any 3 5.04701 5 0.00240
4 7.10115 7 0.01445

nensingular potentials we have

Vix)= Zalxl
=0

From substituting the relation (14) m (13), choosing

(14)

1 +2
m2e 2
=",
B2
and change the variable
mo
= X,
h
we have

En =< WD) Wa¥) >+ D o <Wa(y)
1=0

(15)

|5 W (3) > —Bl= Wi () | Wy (3 > — %)

In which fp = 2Whw and is A coefficient Lagrange
multiplier. If we choose ¥'(y) = CT. Y(s; y) we have V(y)
= CT. ¥(s; y). From substituting ’(y) and P(y), E,convert
to matrix form as bellow

E,=ct.c+ct.p.v.P".

Tt ; (e
me
CB(C PP -cf(?) }
Where,
1=0
The (16) is minimize provided that
iﬁn =0, Eﬁn —0. (17
acT op
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The Eq. 17 are a set of nonlinear algebraic equation.
There are solution for its provided that the determinant of
coefficient is been zero.

Det[A]=0 (18)

The matrix A in (18) is defined as, A=1+P. V. PT- 3P,
P”, in which I is unit matrix.

NONLINEAR OSCILLATOR

We apply this method for quantum oscillator
Vix)= %kxn, n=246,..

potential and the results 1s written m Table 1.
The result of this method for n = 2 is compared to
exact solution in Table 2.

CONCLUSION

The wavelet method 13 a semi analytical approximate
method for solution the schrodinger equation. This
method is based on orthogonal set and in compare to
perturbation theory has a simple algorithm. In
perturbation theory we need to have two conditions:

»  We must to have an exact solution of unperturbed
Hamailtonian.

¢ The perturbation Hamiltonian is very small in compare
to unperturbed Hamiltonian. While, we don’t need
any condition in applying wavelet methods.
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