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Abstract: This study presents a statistical approach to texture classification from a single image obtained under
unknownviewpoint and illumination. Unlike in prior work, in which texture primitives (textons) are defined in
a filter-responsespace and texture classes modeled by frequency histograms of these textons, we seek to extract
and model geometric and photometric properties of image regions defining the texture. To this end, texture
images are first segmented bya multiscale segmentation algorithm and a universal set of texture primitives is
specified over all texture claszes in the domain of region geometric and photometric properties. Then, for each
class, a Tree-Structured Belief Network (TSBN) is learned, where nodes represent the comresponding image
regions and edges, their stafistical dependecies. A given unknown texture is classified with respect to
themaximum posterior distribution of the TSBN. Experimental resultz on the benchmark CUReT database
demonstrate that our approach outperforms the state-of-the-artmethods.
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INTRODUCTION

Textured surfaces in natural scenes are usually
characterized by wvariations in local height, color and
reflectance and hence referred to as 3D texiure. Analysis
of images of 3D texture iz a challenging task, since
different lighting and viewing conditions give rize to
gignificant changes in texture appearance, due to, for
example, shadowing, foreshortening,and occlusion, as
illustrated in Fig. 1. Several recent studies on texture have
addressed the dependence of texture appearances on
imaging conditions {Cula and Dana, 2004; Dana and
Nayar, 1999; Dana 2f al., 1999; Leung and Malik, 2001;
Varma and Zisserman, 2005). In (Dana and Nayar, 1999;
Dana et al., 1999) parametric models based on surface
roughness and correlation lengths have been developed
forclassification of textures in the Columbia-Utrecht
{CUReT)database, which contains texture images over a
wide range of systematic changes in illumination and
viewpoint. Further, in (Leung and Malik, 2001) a universal
set of textons (texture primitives) and their frequency
histogram have been proposed to address 3D effects.
Textons have been defined as cluster centers of filter
responses over a stack of images with representative
viewpoints and lighting. However, in their approach, a set
of registered images with known imaging parameters of
the same unknown texture must be presented for
classification Two similar approaches have been
proposed in (Cula and Dana, 2004; Verma and Zisserman,
2005) where 2D textons are extracted as cluster centersin
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Fig 1: Sample 4 from CUReT database (Dana and Nayar,
1999): Under various imaging conditions the
images seem to represent different surfaces

filter-response space, while their frequency histogram is
expressed as a vector function of imaging paramefers.
Thereby, they have accomplished a computationally
simpler fexture representation, capable of classifving
single images without any a priori information, unlike in
(Leun and Malik, 2001) Our approach draws from prior
wotk the ideas to build a universal et of primitives and to
learn their joint distribution.

Algo, in this study, we build a series ofmodels for
each texture class over a set of images parameterized by
varying illumination and viewpoints. Here, to reduce the
number of models per clags, we employ the standard K-
Medoid algorithm, foll owing the approach in (Verma and
Zisserman, 2005). In the classification stage, a given
unknown texture, obtained under unknown viewing and
lighting directions, is recognized with respect to the
maximum posterior distribution of the learned texture
models. The two fold novelty of our approach stems
from the domain in which we define texture primitives
and from the specification of their joint distribution.
Unlike in prior work, where texture features are extracted
by a bank of preselected filters, we seek to capture
geometric and photometric properties defining the texture,
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Fig. 2: Sample 35 from CUReT: marked re- gions are
nodes of the segmentation tree at levels 8, 9 and
10, respectively.

in unsupervised manner To this end, we perform a
multiscale segmentation of an 1 image by using an
algorithm discussed in {Ahuja, 1996; Tabb and Ahuja,
1997), which outputs a segmentation tree. The
segmentation free contains all segmentations that can be
identified in the image, comresponding to all different
degrees of saliency, e.g., defined as color homogeneity.
Nodes at upper levels correspond to more salient regions,
whereas any cutset of the tree provides a 2D layout of the
gsegmented regions, as illustrated in Fig. 2. Each node of
the segmentation tree is characterized by a feature vector
that includes geometric and photometric properties of the
corresponding region-namely, region area boundary
shape and color mean and variance. The number of tree
levels and the homogeneity values associated with them,
as well as the number of children of each node are a priori
unknown and are dynamically determined by the image at
hand.

The segmentation tree serves as a rich description of
the image for deriving texiure models, which in this paper
comprises two stages. First, the segmented regions in the
training images of all texture classes are clustered in the
aforementioned feature space of geometric and
photometric properties. Then, a texture primitive is
specified as a vector containing the mean and variance of
the feature vectors of regions in a cluster. These texture
primitives form a finite universal dictionary of texture
“words” characterizing all texture classes. Note that
supervizion in prior work, with respect to pre-zelecting an
optimal filter bank, iz eliminated in this paper by the
gegmentation algorithm, which dynamically defermines
the optimal domain of texture primitives. In the second
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modeling stage, for each texture class, we build a Tree-
Structured Belief Network (TSBN), TSBNs are very
popular statistical models in image processing and
computer vizsion (Perarl, 1998; Todorovic and Nechyba,
2005). The TSBN of an image consistz of hidden and
obgervable random variables organized in the same
structure as that of the corresponding segmentation free
of the image. Observables are the feature vectors of
geometric and photometric properties of the
corresponding regions in the segmentation tree and are
mufually independent given their corresponding hidden
variables. Hidden wvariables are labels of the texture
primitives, specified in the first modeling stage, while
connections represent parent-child
statistical dependencies. Note that unlike histograms in
prior work the TSBN captures spatial dependencies
among texture regions. Furthermore, the ascendant-
descendant (Markovian) connections in the TSBN encode
the statistical properties of pixel neighborhoods of
varying size. All this makes TSBNs more expressive
models than frequency histograms usedin prior work. The
joint distribution of hidden and observable variables fully
characterizes the TSBN model of a given texture class and
allows for texture claszification within the Bayesian
framework, i.e., with respect to the maximum posterior
disiribution compuied here by the standard belief
propagation algorithm (Pearl, 1998). Experiments of texture
classification are presented on 20 samples from the
CUReT databaze (Dana ef al, 1999). The results
demonstrate that our approach offers a viable solution

to texture classification.

between them

OBSERVABLES AND TEXTURE PRIMITIVES

In this study, images are represented by
segmentation frees (Ahuja, 1996; Tabb and Ahuja, 1997),
where each region (node) i iz associated with a feature
vector, vi, comprizsing the intrinsic geometric and
photometric properties of region i. Let pi and 2 i denote
the mean and covariance of region i color values. Also, let
Ai denote the region area. To describe the boundary
shape of i, we parse the image into L pie slices, each of
which begins at the ceniroid of i and subtends the the
same angle 2 /.. Next, we compute the normalized
histogram hi={hi(1)}L 1=1, of the number of pixels of region
i that fall in pie slice 1.

Clearly, the region feature vector, specified as yi =
[pi, i,Ai, hi], can be easily extended, as dictated by the
requirements of a particular application. These feature
vectors represent observable randomvariables in the
TSBN.
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In the first stage of learning, segmented regions of
the training images of all texture classes are clustered by
the standard K-Means algorithm m the feature space
determined by y1 values. The K-Means produces K
clusters, {Ck1K k=1, each of which defines the associated
texture primitive. A texture primitive, k, is specified as a
vector containing the mean and variance of the feature

vectors of regions mn a cluster, k = [mean({y1}12Ck),
var({yi}i2Ck)].

TSBNs, MODEL REDUCTION AND
CLASSIFICATION

Tn this study, texture class T is modeled with a TSBN
parameterized over viewpomts V and illumination I. The
TSBN 1s fully specitfied by its jomnt distribution of hidden,
X={xi} and observable, Y ={yi} random variables, 8i2T,
where i denotes a node in the segmentation tree T. A
hidden vamable, xi1, represents the label of a texture
primitive. The label of node 1 1s conditioned on the label of
its parent j and is specified by the conditional probability
tables, P(xi|xj). The joint probability of X of a given texture
class T 1s specified as

P(XT, V, 1) = Qi,)2T P(xifx), T, V, ) (D

Where for the roots we use priors P(x1|T, V. I). Since we

assume that observables y1 are conditionally mdependent

given the corresponding xi, the joint likelihood of ¥ can be

expressed as

POY X, T, V, I) = Qi2T P(yixi=k, T, V, I) (2)

Where P(yijxi=k, *) is modeled as the Gaussian distribution

with parameters encoded in the texture primitive k. It

follows that the TSBN for texture T and unaging
parameters V and T is fully characterized by

PCLY T, V, D) = Q2T Plvafxy, «)P(xifxg, +)  (3)

The parameters of likelihoods P(yijxi, *) can be
learned by using the ML algorithm over the clusters
{CktK k=1, obtained in the first modeling stage. Next, the
transition probabilities, P(xifx], *), can be learned by the
standard belief propagation algorithm (Pearl, 1988;
Todorovic and Nechyba, 2005), the details of which are
omitted for space reasons. Despite the wregular structure
of the TSBN, the computational complexity of the belief
propagation is polynomial in time, since its structure is
known and equal to that of the segmentation tree. Note
that in the above formulation the number of models per
class 1s the same as the number of traming images that
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differ in V and T parameters. For the purposes of texture
classification, this represents a modeling redundancy,
since even considerable variations in texture appearance
of one class may not reduce the classification accuracy if
the other classes are sufficiently different from it. To
reduce the mumber of models per texture class, we employ
the standard K-Medoid algorithm (Verma and Zisserman,
2005). In particular, the set of P(X|T, V, I) values, over all
texture classes T and parameters V and T, may be clustered
by the K-Medoid into M clusters and represented by M
cluster centers. The update rule of the K-Medoid always
moves the cluster center to the nearest data point m the
cluster, but does not integrate over the points as the K-
Means algorithm. Indeed, in the K-Medoid, the cluster
centers are always data pomnts themselves.

Therefore, a selected cluster center can be umquely
identified as an individual P(X|T, V, I) peint, which, in
turn, determines the most representative TSBN model with
V and I values. Note that the outlined procedure yields a
different number of representative models per texture
class. To classify an unknown image, we select the texture
class, © T, for which the posterior distribution P(T, V,
LX|Y) 1s maximum: ~ T =argmax T, V, LX

P(T, V, LX|Y) argmax T, V, X
PRL YT, V, D) G

In Eq. (4), the prior P(T, V, I) 1s assumed uniform over
all possible values of T, V and 1. Moreover, P(Y) is
assumed a smooth, slow changing function, which seems
reasonable considering our premise that texture
appearances undergo considerable variations, 1.e., a wide
range of Y wvalues are equally likely. Thus, in the
classification stage, a given image 1s first segmented to
obtain Y values, then P(X, Y |T, V, I) values are computed
using the belief propagation for all M representative
models of all texture classes and, finally, the image is
classified as in Eq. (4).

EXPERIMENTS

For experimental validation of our approach, we use
the CUReT database (Dana ef al., 1999), which contains
images of 61 realworld 3D textures, each imaged under 205
different combinations of wviewing and illumination
directions. As in Cula and Dana (2004), Verma and
Zisserman (2005) the same subset of 20 textures is
selected-specifically, samples: 1,4, 6,10,12, 14,16, 18, 20,
22, 25, 27, 30, 33, 35, 41, 45, 48, 50 and 59. Out of the
existing 205 images per class, only 92 are chosen that
contain a sufficiently large texture region (whose viewing
angle 1s less then 60 degrees). These 92 images are then
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Fig. 4: Average arrival rate of database according to the
no. of top images considered

manually cropped, to ensure that they contain only
texture information and randomly divided into two distinct
sets of 46 training and 46 test images. The classification
results are averaged over a set of 5 experiments, each
conducted for different random partitioning of images into
the training and test set. Each experiment consists of four
stages:

Segmentation of 46x20=920 ftraining images and
finding their segmentation trees

Generation of the dictionary of texture primitives
Learning TSBNs from the fraining images and
reducing the total number of the learned models
Classification of 920 test images. For describing the
boundary shape of a segmented region, we use L =
40 histogram bins.

Figure 3 presents the classification results over a
range of values for the number of texture primitives, K, for
the average number of reprezentative models per class
and for the number of available uniformly sampled training
images per class from the fraining set.

When 46 models per class on average and 200 texture
primitives are learned from 920 fraining images, our
recognition rate averaged over 5 experiments and over 20
classes is 98.09%, outperforming 97.83% in (Verma and
Zisserman, 2005) and 96.08% in (Cula and Dana, 2004).
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From, a small number of models per texture class (less
than 12) renders our approach inferior to both (Cula and
Dana, 2004) and (Verma and Zisserman, 2005); however,
when that number iz sufficiently large (above 24), our
recognition rate exceeds those of (Cula and Dana, 2004,
Verma and Zisserman, 2005). In the right plot of in Fig. 4
the global recognition rate increases as the number of
training images per class becomes larger, where,
interestingly, ours is greater than the one reported in
{Cula and Dana, 2004) for a very small training set. This
suggests that TSBNs are capable of capturing more
statistically significant information from a few training
images than frequency histograms used in (Cula and
Dana, 2004).

CONCLUSION

The appearance of texture varies significantly as the
viewpoint and lighting directions change and must be
explicitly accounted for, in order fo accomplish a
reazonable classification accuracy on a single sample with
unknown imaging parameters. To thiz end, in thiz study,
an optimal set of TSBN= per texture class iz learned from
training images, represented as segmentation trees and
indexed by the gignificant viewpoints
illumination The presented experimental results obtained
on the CUReT database demonstrate that our approach
vields higher recognition rates than the state-of-the-
artmethods in the same experimental seftings.

Two key factors, proposed in this study, lead to
the improved classification performance. First, feature
exfraction iz done by the mulfiscale segmentation
algorithm, which dynamically finds segmentations at
all saliency scales present in the image, instead of
using a pre-selected filter bank, as in previous work.
Second, TSBN¢& capture spatial dependencies among
texture regions of varving size, which makes them
more expressive than frequency histograms used
prior work.

most and
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