MedWe]l Asian Journal of Information Technology 6 (3): 385-387, 2007

Onllne

© Medwell Journals, 2007
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Abstract: Tn this study a set of ternary linear codes is developed and their error-correction capacity is explored.
The relative advantage of certain codes over the other codes of the set is also discussed.
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INTRODUCTION

Letp be a prime number, n- a positive integer and
F; -n dimensional row vector space with canomical basis

over the finite field F, so that a typical element x ¢ F' has

the shape x = (x,....x,), x € F,i=L...,1 . A k- dimensional
subspace C of F! is called is called a p- ary linear [n.k]

code. The vectors of are called code-words, and
sometimes more briefly words. The parameter is called the
length of a codeword and 1s called the dimension of the
code. Tn this study we will explore a new set of ary, also
known as ternary, linear codes and their error-correction
capacity. A linear error-correcting code is a linear code for
which 1t 1s sometimes possible to detect and correct errors
that occcur during transmission of the code-words.
Specifically, a code 1s emor comecting if the code
possesses properties which allow to detect and correct up
to errors. For basic acquaintance with the theory of these
codes, please consult (Pless,1982; Van Lint, 1 982). Some
applications of error correcting codes include correction
of errors that occur in information transmitted via the
mternet, data stored in a computer and music encoded on
a computer disk.

LetwW=F and V=F withk <n and let G be a Kxn
matrix over of full row rank. ThenC ={ve V |v=wG for
some we W} is a subspace of V of dimension K . Hence
the vectors in C form the code-words in an[n,k] linear
code in V with 3" code-words. The matrix G is called a
generator matrix for C. For this G, we can find an
(n—k)xn matrix H of full row rank over F, with HG' = 0,
where G* denotes the transpose of G, Since HG'= 0, then
HG'w'=0forall we W.HenceH{(wG) =0 forallwe W
,or, equivalently He' =0, forallce C . And since H has full
row rank He' = 0, if and only ifc e C . Thus H, can be used
to identify code-words in C . The matrix H is called a parity
check matrix for C. Note that HG' = 0 implies GH' =0, so
the columns of H', that is the rows of H, are in the null-
space of G. Thus to determine H from G, we must only find

a basis for the null-space of G and place these basis
vectors as rows in H. Note that for (7, 3) a ternary linear
code C, (& is cogredient to the block matrix [1; | A] where T,
is the 3=3 identity matrix and A is the 3x4 matrix over Fa.
The corresponding H 1s then given by H =[A"[2L,] where
L, is the 4>4 1dentity matrix. Let G,be the following 3x7
matrix

100 o B o v
010 a o B v
001 B o o v

wherea, B, ye GF (3), a £ P andw,p # 0. Needless to say
that GF(3) = {0,c, B} .

ERROR-CORRECTION WITH
PARITY CHECK MATRIX

We discuss a couple of theorems in this section. The
theorems are not unknown, but their proofs have been
meodified to suit our purpose.

Theorem (1) let H be a parity check matrix of a p-ary
[n.k]linear code C. Then the minimum number of
dependent columns of H is greater than or equal to w (C)
the minimum of weights of the nonzero words of C.

Proof. Let be the minimum number of dependent
columns of H. Then by definition of dependence there
columns C;, C,...C, of H and s
elements @€ ¥, not all equal zero, such
that C; +..+C; =0. We now observe that none of
these o,,...,0

exist S

is zero. Assume without loss, thato, =0,

Theno(lC +. +0¢C =( becomes O('ZC +.. +0¢C =(0. As
is the minimum number of dependent columns of H, the
column vectorsC C are independent overE . Then
equatlono(zc +.. +0(SC =( implies thato; =..=¢, =0
This is a COI’ltI'adlCthl’l as from dependence of
C11 ,Clz,___,C‘s we know that @@, can’t be all zero. Hence
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each oftu...¢ is nonzero. Let vcFsuch that 1,1,
coordinates of V are, % ®;respectively and the other
coordinates are zero. Then Hy' :C’*1q1 +___.|.c,;s(jls =0 and
therefore is a word C of with weight s . Hence s = w(C).

Theorem (2} let C be a P-ary [n,k] -linear code and H
be a parity-check matrix of C. If no two columns of H are
dependent, then C can detect and correct 1 error. Proof.
Throughout this proof, we let e, (T) denote an n-
dimensional row vector of F; whose mth coordinate 1s
ve F, and other coordinates are zero. Let C be the code-
ward that wes sent and due to noise m thecharmel r = ¢ + e (o)
was received. Then Hr'=Hc +He () =0+ aC; = aC;
where C, 1s the ith column of H. The equation Hr = C
indicates that error vector is (@) and one recovers
codeword ¢ from r as follows: ¢ =1 —e{a). On the other
hand, contrary to our assumption if two columns C; and C;
were dependent i.e. aC, were equal to BC,, then in earlier
situation Hr' would be equal to aC, as well as BC, and we
would not know which of the two code-words: ¢ = r-¢ (&)
and r-¢ (), was actually sent, making unique decoding
umpossible. But in our case, due to the assumption of
mdependence of two columns of H, this ambiguity in
recovering the transmitted word will not arise.

MAIN RESULTS

We begin this section with a theorem concerning the case

v =5

Theorem (3) the last four coordinates of a word
generated by:
100 o P op
Gg=01 0 aa v B B
001 Pp a o fp

18!

A permutation of 1 zeroand 3 «'s, or
A permutation of 1 zeroand 3 ' s, or
A permutation of 2 zeros, 1 and 1, or
A permutation of 2¢' s and 2f' s.

Moreover the minimum weight of C(Gg), the code
generated by Gy is 4.

Proof. TLetx=(c,B,0.B),y (e, o, « B, P
andz = (B,o.c.B) . Then a code word which 1s one-span
i.e., spanned by just one row vector of G with a nonzero
coefficient from GF (3) should have one of %,2x,y,2y.z
or 2z for last four coordinates. As each of x, y, z contains
2e' s and 2P' =s, so will each of by virtue of the fact
that 2t = f and 2P = «. As x, v, 7, 2%, 2y and 2z are all
distinct and each contains 2¢' s and 2’ s, they constitute
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all the 41

T
says that each word of C(G;) which is cne span has
weight 1+4 = 5.

Let us now consider the nonzero codewords which
are two-spans i.e., the words which are spanned by 2 row
vectors of G with nonzero coefficients from GF (3).
There are 12 of them and each should have one
X+ V.X+ 2, v+ 22x+v,2x+ z,2v+ z of ortheir doubles
as the last four coordinates. As:
x+y=(00,00),x+z=(0,0,fc)y+z=(0,A0,0),
2x+y =(0,4.0,0),2x + z={0, B,0,0),
their doubles too will contain 2 zeros,l¢and 1P. Thus
these 12 four digit vectors will constitute all the
4 12 permutations of 2 zeros, 1eand 1B . Hence each

permutations of 2¢' s and 2f's. This also

2!
codeword of C(G,) which 1s 2-span should have weight
242 = dand the last four coordinates of each of these 12
codewords is a permutation of 2 zeros, 1 and 1.

Finally we investigate the eight codewords which are
3-spans i.e. the words which are spanned by all three row
vectors of G with nonzero coefficients from GF (3).

Each of them should have one of
X+ty+z x+2y+222x+2y+22x+v+2zZor their
doubles as the last four coordinates. Note
that x+2y+22.2x+2y+2z2x+y+2z and

2x+y+2z={(0,a,0,0) . As each has 3a' s and 1 zero,
they constitute all the 4! permutations of 3a's and
T
1 zero. On the other hand, the remaining four 3-spans,
being doubles of these four, constitute all the 41
T
permutations of 3B' s and 1 zero. Hence each codeword of
C (Gp) which is 3-span has weight 3+3 = 6 and the last 4
coordinates of each of these eight codewords is a
permutation of zero and s or a permutation of 1 zero and
3 s. Thus the mimmum weight of C(Gy) 13 4.

Corrolary (4) the code generated by G, denoted by C
{G,), 18 a 1-error correcting ternary linear code for any ye
GF (3).

Proof. As minimum weight C {Gp) of is 4 the minimum
weight of C(G,) and C (G,) 1s greater than or equal to 3.
Hence for any ye GF (3), the minimum weight of C (G,) is
greater than or equal to 3. Thus by Theorem (1),
theminimum number of dependent columns of parity
check matrix H of C (G,) is greater than or equal to 3. So
any two columns of H are independent. Hence by
Theorem (2), can detect and correct 1 error.

Let us now prove a theorem that sheds light on an
advantage that code C {G) possesses over C (G,) and
C(Gy).
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Theorem (5) if one of the last four digits of a word of
C (Gp) gets altered during transmission, the corruption of
the word can immediately be felt and known from the look
of the last four digits. But it may not be true for C (G, ) if
y=oor y=0.

Proof let be a codeword of type () of Theorem (3) 1.e.
the last four coordinates of ¢ 15 a permutation of 1 zero
and 3 alphas. Suppose is sent and during transmission the
zero digit of the last four digits of gets altered. Then the
received vector r should have 4 nonzero digits, which are
either all alpha or alphas and beta, at the tail. As this r is
not a codeword of type (d) of Theorem (3), containing 2
alphas and 2 betas, and these are the only words in C (Gyp)
whose last four digits are nonzero, one immediately sees
that this 1s not a codeword at all. On the other hand, if cne
of the alphas 1s altered, then r should have either 1 zero,
1 beta and 2 alphas or 2 zeros and 2 alphas. From the look
of the last four digits, one immediately sees that this r 1s
not a word, as by Theorem (3) (&) and (b), if one of the last
four digits of a word is zero, then the remaining three
should be identical, and by Theorem (3) (a), if two of the
last four digits are zero, then the other two digits are alpha
and beta. Thus if one of the last four digits of a type ()
word is altered, one immediately realizes that the word has
undergone corruption. Almost identical arguments worlk
for a codeword of type (b).

Suppose now a codeword of type (¢) 1s sent. Of the
last four digits of say a zero digit 15 altered during
transmission. Then one of the last four digits of r 18 zero
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and the other three digits are nonzero. But these three
nonzero digits are not same. Hence the fact that the
recelved vector r 18 not a word immediately comes to
notice. On the other hand, if a nonzero digit of the last
four digits of is altered, then r should have either 3 zeros
and a nonzero digit or 2 zero and 2 identical nonzero
digits. One then immediately knows that the transmitted
word has undergone corruption, as by Theorem (3) (c), at
most of the last four digits of a codeword can be zero and
when 2 of the last four digits of a codeword are zero, the
other two are distinct.

Finally suppose a codeword is of type (d) i.e. the last
four digits of are a permutation of 2 alphas and 2 betas.
Say ¢ 18 sent and during transmission a digit 1s corrupted.
The received vector r 1s then either a vector one of whose
last four digits 1s zero, but the other 3 digits are nonzero
and non identical contrary to Theorem (3) (a) and (b) or 1s
a vector each of whose last four digits 1s an alpha or beta
and the number of alphas and betas 15 not equal, as
opposed to Theorem (3) (d). One immediately notices that
such an r is not a codeword, hence r has undergone
corruption.
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