Medweu

Onllne

© Medwell Journals, 2007

Asian Journal of Information Technology 6 (2): 258-262, 2007

On the Problems and Solutions of Static Analysis for Software Testing

"N. Srinivasan and °P. Thambidurai
"Department of Computer Applications, Sathyabama University, Chennai, India
*Department of Computer Science and Engineering and Information Technology,
Pondicherry Engineering College, Pondicherry, India

Abstract: Software testing is any activity aimed at evaluating an attribute or capability of a program or system
and determining that it meets its required results. Although crucial to software quality and widely deployed by
programmers and testers, software testing still remains an art, due to limited understanding of the principles of
software. The difficulty in software testing stems from the complexity of software: we can not completely test

a program with moderate complexity. Testing 15 more than just debugging. The purpose of testing can be
quality assurance, verification and validation, or reliability estimation. Testing can be used as a generic metric
as well. Correctness testing and reliability testing are two major areas of testing. Software testing 1s a trade-off
between budget, time and quality. In our approach, we focus the problems and solutions and the static analysis

of those problems and solutions for software testing.

Key words: Software life cycle, software design, software performance, software maintanance, Dynamic Data
Exchange (DDE), Object Linking Embedding (OLE), Commercial-Off-The-Shelf(COTS)

INTRODUCTION

Software testing 1s an essential phase in the modern
software life cycle. It 1s the process of revealing software
defects and evaluating software quality by executing the
software (Ben and Marliss, 1997; Burnstein, 2003; Galin,
2004; Gao et al., 2003, Ginac, 1998; Horch, 2003; Myers,
1979). A well-designed test case may reveal previously
undetected software defects. Software testing, defects
repair and software reliability are closely related to one
another. Thorough software testing can ensure the
software quality by reexamining the requirements
analysis, design and coding after the software has been
created. A good process in software development uses
top-down techniques. In the software design phase,
people analyze and define the problem domain Then they
perform an analysis of the software requirements to build
the data domam functions, quality requirements
constraints and validation standards. In the software
development phase, they tumn the concept of software
design into source code using suitable programming
language(s). For software developers, software testing is
the inverse process of software development in some
sense. Prior to the software testing phase in the software
life cycle, people usually construct the real software from
abstract concepts. While at the software testing phase,
people usually want to design a set of representative test

cases to deconstruct the developed software by detecting
the flaws injected during the various software
development phases. Some basic testing principles are
listed as follows:

Present the expected testing results when designing
test cases. A design case should have two parts, i.e., the
precise descriptions of both input data and their correct
consequences. A good test case should have a higher
chance to reveal the hidden defects (Fig. 1).

Separate the software testing team from the software
development team, since the philosophies of the two
teams are different. The former is intentionally destructive
while the latter 1s constructive. Therefore, software testing
should be performed by the trained testers who are not in
the software development group.

Design invalid test cases. A program should be
capable of runmng properly i different operation
situations. For instance, it should work well in the
presenice of invalid mputs that are intentional or
unplanned. The program should be able to reject the
mvald mmputs and give out the error mformation on

possible reasons, together with corresponding
counteractive measures.
Perform regression testing each time the

software-under-test is revised, as new defects may be
brought up by the software modification. In regression
testing, the tester may find the newly ncurred software
defects using previous test cases.

Corresponding Author: N. Srinivasan, Department of Computer Applications, Sathyabama University, Chennai, India

Asian J. Inform. Tech., 6 (2): 258-262, 2007

Test methodology

Test planning

Test design

Test implementation

aaon

Fig.1: Software testing stages

The tester should concentrate on the error-prone
program segments. It has been demonstrated that the
more defects you reveal in a program segment, the more
chances you can find other software defects in this
segment. Generally speaking, the existence of additional
defects in a special chunk of software code 1s proportional
to the detected number of software defects m that
segment.

RELATED WORK

Software performance: Software systems are becoming
increasingly complex. In the arena of real-time
measurement and control, the may be
distributed, embedded and highly responsive. The
software is usually made up of a large amount of in-house
developed components, Commercial-Off-The-Shelf
(COTS) components and newly developed components.
This trend makes the integrated software rather
complicated and more prone to be out of service. As a
result, the process of verification and validation for such
software-intensive systems requires a larger number of
test cases and more meticulous testing than conventional
automation software systems.

Embedded systems are involved in almost every facet
of modern life and they are playing an ever-increasing role
m the monitoring and control of potentially dangerous

software

259

Table 1: Typical software quality factors insoftware testing

Functionality Engineering Adaptability
(exterior quality) (interior quality) (future quality)
Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure

industrial applications (Douglass, 2000, 2003). Tt illustrates
the basic structure of a real-time monitoring and control
system. In a basic embedded measurement and control
loop, a sensor measures the monitored variables, a
microprocessor-based controller determines how the error
between the actual and target measurements could be
corrected and an actuator executes the command to drive
the controlled variables close to the target values. Such
operations are repetitious when the system runs. In this
basic control loop, there are at least three types of faults
that may oceur during the system operations.

One commonly encountered fault i1s component
malfunctiorn, such as sensor or actuator faults. Also in the
embedded measuwrement and control system, the limited
system resources such as CPU, memory and bandwidth
should be properly allocated for each task Otherwise,
sampling jitter and control delay may occur. Furthermore,
control delay and packet loss during data transmission
should also be taken imto account in networked and
embedded control system designs. As a result, the testing
regarding software availability, reliability, survivability,
flexibility, durability, security, reusability and
maintainability is essential for the safety-critical, real-time
automation system (Table 1). There are several factors
that make testing of distributed and embedded real-time
software difficult. The first is complexity. The large
number of potential test paths overwhelms software
testing even for a small network, let alone the testing for
large-scale distributed systems. For such software testing,
only a small number of paths can be examined. Therefore,
the thoroughness of software testing cannot be ensured.
Second, the real-time constraints mtensify the software
testing, as the software-under-test often demands a
complex test environment to accurately evaluate the
software performance m different wmplementation
SCEnarios.

Furthermore, in object-oriented software, defects
caused by encapsulation, inheritance and polymorphism
must be carefully detected (Ambler, 2004).

Software maintenance: There are usually four phases
experienced by the released software: enhancement,
maturity, obsolescence and termination (Norris and Rigby,
1992). The distinction between any adjacent phases 1s not
strict and could be rather blurred in the phase transition.
Given that software systems often need to be changed to
accommodate changing environments, it is important to

Asian J. Inform. Tech., 6 (2): 258-262, 2007

establish a safe and well-controlled mechanism for
modification and update. In practice, software
maintenance often consumes the most time m the
software life cycle.

It explains that software maintenance continues
throughout the software life cycle. The cost of software
maintenance can occupy 40-70% of the total software
expenditure (Norris and Rigby, 1992).
maintenance has two main tasks: identify the unexposed
defects after the software has been installed on the
customer site and adapt to various operating conditions
and ever-changing user requests.

It can be regarded as the iteration of software

Software

development and testing whenever any new defects are
found or certain part of the software needs to be updated
to fulfill the new requirements. There are four types of
software maintenance (Norris and Righy, 1992).

Corrective maintenance: After mstallation at the user
sites, the latent software defects appear and therefore
revision is needed to ensure the proper running of the
software. This is of critical importance for software quality
assurance and can be viewed as a type of software
testing.

Adaptive maintenance: It ascertains that the released
software can adapt to new requirements, which were not
mn the previous design specification. Both changing user
requirements and operating platform make the adaptive
maintenance necessary.

Perfective maintenance: New technologies need to be
mcorporated mto the existing software to unprove its
performance. In the software development phases, it is
possible that the desired technology has not been
available, or the technology employed is not the best for
the application. In such cases, end users may often want
the software to be upgraded using novel technology. For
example, n the early mdustrial automation software, data
exchange among different applications was realized by the
traditional clipboard.

Later, the occurrence of Dynamic Data Exchange
(DDE) techmology made the data exchange more powerful
for industrial automation software. More recently, the
concept of Object Linking and Embedding (OLE)
automation made data communication among different
applications in a software system easier and more flexible.
Hence, each time when a newer or more suitable
technology is available, the software may need to be
modified to incorporate any new developments to meet
the often changing and tougher requirements.

260

Preventive maintenance: Tt involves making changes to
the software that, m themselves,
correctness nor performance but make future maintenance

mprove neither

activities easier to be carried out.
PROBLEMS

The confused test team: A project manager fears that his
team will not complete the test activities by an aggressive
deadline. You male a house call and as you interview the
test team, you find that the members have serious doubts
about whether the chosen methods are appropriate and,
in fact, whether they work at all. Your first feeling is that
the team 18 upset over things other than work and 1s not
focusing on how to perform its tasks.

The project 1s on an aggressive delivery schedule
and, therefore, many of the available trained engineering
resources are working 24 h a day on the design team. In
actuality, a lack of techmical leadership leaves the test
team flabbergasted and unable to complete the test work
on time.

The test-maintenance failure: After 16 months of creating
test specifications from a requirements specification, the
requirements Organization publishes a new version of the
requirements specification. At this point, only very himited
traceability exists from the written tests to the
corresponding requirements specification. Consequently,
locating the tests that you need to update according to
the new requirements specifications requires another
several months.

Manual testing: A test team 1s spending most of its time
running test cases but is executing the tests slowly. It
takes as much as a day just to test one new feature of a
system and often the tests fail due to system timeouts.

Executing full regression tests has been so expensive
that the team avoids doing se whenever possible.
Needless to say, the test execution is manual.

The uncertainty principle: Uncertainty introduced by the
testing method 1s virtually unavoidable. The following C
code example is a classic, although oversimplified,
illustration of the problem:

if (x!=0)
yo—x
else
assert (0);
x+=2;

Asian J. Inform. Tech.,

1004 .
B Pass O Fail
754
=l
2
=
()
2, 50+
g
<
ES
259
0-
'—‘(\IMWW\OT\OOO\O:
=2 EEERE EEZEC=E 3=
2 2% 8 BEEE O o=
A @maa adé aaaa g §

Fig.2: Percentage of tests complete by build, using
traditional regression testing methods

1001

B pass [Fail

751

% cmpeleted
o
3

[
o
1

[l
L

Build 1
Build 2
Build 3

-
=
=

2
A

Build 5
Build 6
Build 7
Build 8
Build 9

Build 10
Build 11

Fig.3: Cumulative percentage of tests completes using
traditional regression testing methods

The above code behaves differently if compiled in
debug mode than it behaves if you compile it in release
mode. Because it is in C, the “assert” macro expands to
nothing and the x+=2 statement takes the place of the
assertion after the “else” statement. Other, often more
difficult, examples include optimizers being too aggressive
when test code in a system otherwise affects its size,
speed, or behavior and when system or component
simulators produce incorrect results. A problem that
occurs during testing is not repeatable when running a
non-test session and a feature that worked just fine
during testing fails in real life.

Selecting the right tests: You work with a group that
tests software for maintaining a communications network.
The software you are testing comprises statistics-
gathering nodes, an analysis module and a user interface
for connecting to other components. The system is
distributed and the user interface runs on a PC. The test
group has started constructing test cases using an
automated tool to test the system through the user
interface.

261

6 (2): 258-262, 2007

missed passcamed | passren W pass new
falcared Mislren [fail new
1200
||
Il
g
3
§600
§
" 30
[T e S S S
- N] < 0 4] ~ o @ Q "
T oz 3 §o@§ @ oz @z ;o g
33 33 333 33 2 =
a2 o a a2 a 2 o o a2 3 3
a a
Fig. 4: CTA cumulative test results using traditional

regression test methods

canied new B niguenew [Wtested
120
%
-
60 - —
U =

2)
64
)
0

=

build 1
build 2 =
build 3 -
build 4 —
build 5 -
build 6 -+
build 7 7
build 8 -
build & -+
build 10 7
build 11

Fig. 5: Changes versus testing completed by build

Mmissed passcamied passrenn W pass new
falcared Mfailven [0 fall new
1200
N |
900
i
7
o600
i
Fa
e Sl T S
roN ® ¥ w0 ~ ® 0 0 r
T » ¥ ¥ ¥ v U U 3 ; 7
3 3 3% 3 3 3 3 3 3 =2 =
a a a a a a a o a F] 3
5 A&

Fig. 6: CTA cumulative test results
methods

using targeted test

RESULTS AND DISCUSSION

Traditional Vs targeted testing: Figure 2-7 Testing
activities can fail in many ways, however, you can prevent
most problems with the following practices: form a well-

Asian J. Inform. Tech., 6 (2): 258-262, 2007

canied new Laaimed new W esied

Builg 17
build 2 1
bl 3
build 4
buld 5 4
build & 1
buile 77
build B 7
bl @ T
build 10
buite 11 o

Fig.7: Changes versus testing completed by build using
targeted test methods

qualified test team with the appropriate means for
performing the tests at hand, make testing an integral part
of software development, employ change-management
processes, ensure requirement traceability to and from
tests, automate test specification and execution and
design for testability.

Given the complexity of current and anticipated
software and communications systems, you should expect
software testing to become even more complicated.

Consequently, even more potent tools and
methodologies will emerge over time. Manual testing
is becoming a less viable alternative and integration
with the overall design processes and tools will prove
necessary to keep pace in testing these complex current
and future systems.

CONCLUSION

Software testing is an art. Most of the testing
methods and practices are not very different from 20 years
ago. It is nowhere near maturity, although there are many
tools and techniques available to use. Good testing also
requires a tester's creativity, experience and intuition,
together with proper techniques.

Testing is more than just debugging. Testing is not
only used to locate defects and correct them. It is also
used in validation, verification process and reliability
measurement.

Testing is expensive. Automation is a good way to
cut down cost and time. Testing efficiency and
effectiveness is the criteria for coverage-based testing
techniques.

262

Complete testing is infeasible. Complexity is the root
of the problem. At some point, software testing has to be
stopped and product has to be shipped. The stopping
time can be decided by the trade-off of time and budget.
Or if the reliability estimate of the software product meets
requirement.

Testing may not be the most effective method to
improve software quality. Altemative methods, such
as inspection and clean-room engineering, may be
even better.

REFERENCES

Ambler, S.W., 2004, The Object Primer: Agile Model-
Driven Development with UML 2.0. Cambridge, UK:
Cambridge University Press.

Ben-Menachem, M. and G.S. Marliss, 1997. Software
Quality: Producing Practical, Consistent Software,
Slaying the Software Dragon Series. Boston, MA:
International Thomson Computer Press.

Burnstein, 1., 2003. Practical Software Testing: A
Process-Oriented Approach, New York: Springer.

Douglass, B.P., 2000. Real-Time UML: Developing
Efficient Objects for Embedded Systems, (2nd Edn.),
Reading, MA: Addison-Wesley.

Douglass, C., 2003. Safety-critical software certification:
Open source operating systems less suitable than
proprietary? COTS. I., pp: 54-59.

Galin, D., 2004. Software Quality Assurance: From Theory
to Implementation, Reading, MA: Pearson/Addison

i

Wesley.

Gao, I.Z., H.S.J. Tsao and Y. Wu, 2003. Testing and
Quality Assurance For Component-Based Software.
Norwood, MA: Artech House.

Ginac, F.P., 1998. Customer Oriented Software Quality
Assurance. Upper Saddle River, NJ: Prentice Hall.

Horch, J.W., 2003. Practical Guide to Software Quality
Management, (2nd Edn.), Norwood, MA: Artech
House.

Myers, G., 1979. The Art of Software Testing, New York:
Wiley.

Norris, M. and P. Rigby, 1992. Software Engineering
Explained. Chichester, England: Wiley.

