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Comparative Analysis of Intelligent Controllers for Permanent
Magnet Synchronous Motor Drive Systems
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Abstract: The PMSM (Permanent Magnet Synchronous Motor) drive systems are often used in electrical drives
because of their simple structures, ease of maintenance and efficiency. However, the nonlinear behaviour which
arises mainly from motor dynamics and load characteristics and the presence of uncertainties malke their control
an extremely difficult task So, the speed control strategy should be adaptive and robust for successful
industrial applications. To handle the control issue more effectively, three artificial mtelligence control
strategies namely, Fuzzy Logic (FL), Artificial Neural Network (ANN) and Newro-Fuzzy (NF) are proposed since
they require only a reduced computation power, while maintaining satisfactory static and dynamic performance
and a good insensitivity to perturbations and parameter uncertainties. The traditional back-propagation learning
algorithm is used for training the ANN and the NF controllers. The performances of the three control strategies
are mnvestigated and compared in sinulation. The results show that the ntelligent controllers are reliable and
highly effective in the speed control of the PMSM.
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INTRODUCTION

Among AC drives, the permanent magnet
synchronous motor has been becoming popular due to
some of its advantageous features (Krause, 1986). In high
performance variable speed drive (HPVSD) systems the
motor speed should closely follow a specified reference
trajectory regardless of load disturbances, parameter
variations and model uncertainties. In order to aclieve
high performance, field oriented control is the most
popular choice. Traditionally, these control issues are
handled by the conventional Proportional-Tntegral (PT)
controller and other controllers such as model reference
adaptive controller, sliding mode controller, variable
structure controllers. However, the difficulties of
obtaining the exact d-q axis reactance parameters of the
PMSM lead to cumbersome design approach for these
controllers (Liu et al., 1988). Moreover, the conventional
fixed gain PI controller is very sensitive to step change of
control speed, parameter variations and load disturbances
(Novotny and Lorenz, 1986). Moreover, the precise speed
control of a PMSM drive becomes a complex 1ssue due to
nonlinear coupling among its winding currents and the
rotor speed as well as the nonlinearity present in the
electromagnetic developed torque due to magnetic
saturation of the rotor core. Thus, the mtelligent
controllers are expected to play an mncreasing role for ugh
performance PMSM drive systems.

Recently, researchers (Tbrahiin and Levi, 2002; Uddin
and Rehman, 2000; Rehman et al., 2002, Udm et al.,
2002; Rehman and Hoque, 1998, Elbuluk ef af., 2002;
Singth et al, 1998, Bolognain and Zigliono, 1996,
El-Sarkawi et al., 1994) have done extensive research for
application of Fuzzy Logic Controller (FLC), Artificial
Neural Network (ANN) and Neuro-Fuzzy (NF) controllers
in HPVSD systems. Simplicity and less intensive
mathematical design requirements are the main features of
intelligent controllers, which are suitable to deal with
nonlinearities and uncertainties of electric motors.
However, each intelligent control algorithm has its own
merits and drawbacks (Zilochian and Tamshidi, 2001).
Therefore, the main objective of this study is to provide
a useful comparison among various mtelligent controllers
such as F1.C, ANN and NF controllers in terms of design,
implementation and performance aspects for Permanent
Magnet Synchronous Motor (PMSM) droives. As a
representative of ANN, a standard Multi-layer Neural
Networl (MLP) is used in this study. For the Fuzzy Logic
Controller (FL.C), the neurcnal implementation allows the
adjustment of the various membership functions. For the
scope of the comparison, a closed loop vector control
scheme for the PMSM incorporating the intelligent
controllers 18 successfully implemented and the
performances are investigated and compared in simulation
at different operating conditions.
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Background: The earliest vector control principles for
AC  permanent
resembled the control of a fully compensated DC
machine. The idea was to control the current of the

magnet  synchronous  machines

machine in a quadrature space, denoted g-space, with the
magnetic flux created by the permanent magnets. The
torque 18 then directly proportional to the product
of the flux lnkage created by the magnets and the
current. In an AC machine the rotation of the rotor
that the

frequency. Tf the current is then controlled in g-space

demands flux must rotate at a certain
with the flux, the current must be an AC in contrast with
the DC current of a DC machine. The mathematical
modelling of an AC synchronous machine is most
conveniently done using a coordinate system, which
rotates  synchronously with the magnetic axis of the
rotor, 1.e. with the rotor. The x-axis of this coerdmate
system is called the direct axis (usually denoted as "d’)
and the y-axis 1s the quadrature axis (denoted as 'q). The
magnet flux lies on the d-axis and if the current 1s
controlled in g-space with the magnet flux it is aligned
with the g-axis. This type of control 1s referred to as 1d-
O-control.

A PMSM motor consists of permanent magnets
mounted on the rotor surface and three phase stator
windings which have a sinusocidal distribution and
displaced by 120°. The stator voltage equations of a
PMSM in the rotor reference frame (g-d frame) are
described as follows:

v, =R,i, + L +LPwi, +A w, @
v, =R, +L 1, -L Pw i, (2)
Te =1.5Apiq +(Lg —Lgigiy] (3)
w, =0 4)

W, :%(Te ~Fw, -Ty) )

From Eq. 1 and 2, the discrete-tine equation can be
obtained as follows:

. Lyr. .
vy (K)=R,i (k) + ?[lq(k +1) —lq(k):|+
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(6)
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Te(k) = Apiq (k) + P(Ld qu)id(k)iq(k) (8)

Where R, : Resistance of the stator windings, i, 1; d
and g axis currents; L, L, d and q axis mductances; w,
angular velocity of the rotor; 8: Rotor angular position; A,
amplitude of the flux induced by the permanent magnets
of the rotor in the stator phases.

T.: Electromagnetic torque; T, Shaft mechanical
torque; P: Number of pole pairs.

T: Combined inertia of rotor and load; F: Combined
viscous friction of rotor and load.

One meets primarily two methods for implementation
of the strategy of control which consists n mamtaming
the current id with a zero value and to control speed
and/or the position with acting on the current i, ie. on
the couple developed by the engine. The first consists
controlling the alternating currents circulating in the
stator windings of the machine, the second to control the
Parl’s components of these currents (Krause, 1986).

Control principle: The machine parameters are given in
Table 1. A typical closed loop vector control scheme for
PMSM 1s shown in Fig. 1 in which different mtelligent
controllers are used as speed controller. From the speed
reference and measured speed, a regulator calculates the
set point of the torque, i.e., the value of reference of the
current i, The rotor position measured by a position
encoder, combined with the reference values iand 1,allow
to calculate, by a reverse Park’s transformation, the
reference values of currents 1,*, 1,*, 1.*. These values
are compared w ith the measured values 1., 1,, 1, to fix the

Table 1: The machine parameters

Pairs of poles P 4

Stator resistance 2.875Q
Flux induced by magnets 0.175 Wb
Tnductance T.d 8.5 mH
Inductance Lg8.5mH

|
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Fig. 1 : Vector control with local current loops
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Fig. 2: Vector control with fuzzy inverse model controller
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Fig. 3: Structure of the controller
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Fig. 4: FLC Membership functions for the mput e

control signals of each inverter’s arm. These signals
are obtained either by regulators with threshold, or
by analog PI regulators whose output feeds a
modulator MLI (Leonhand, 1985; Lajoie-Mazenc ef al.,
1985, Matagne, 1993) .

PID controller: Despite the impressive advances
achieved in the control engineering discipline, PID still
remains the most common control algorithm in industrial
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use today. It 18 widely used because of its versatility, high
reliability and ease of operation (Astron and Hagglund,
1995). A standard method of setting the parameters 1s
through the wuse of Ziegler-Nichols' tuning rules
(Ziegler and Nichols, 1942). These techniques were
developed empirically through the simulation of a large
number of process systems to provide a simple rule. The
methods operate particularly well for simple systems and
those which exhibit a clearly dominant pole-pair, but for
more complex systems the PID gams may be strongly
coupled in a less predictable way. For these systems,
adequate performance is often only achieved through
manual and heuristic parameter variation.

FLC scheme: Unlike the classical control design, which
requires a plant model for designing the controller, fuzzy
logic mcorporates an alternative way which allows one to
design a controller using a higher level of abstraction
without knowing the plant model. This makes Fuzzy Logic
Controller (FLC) very attractive for 1ll-defined systems or
systems with uncertain parameters (Zaden, 1973). In
order to design the FL.C, some variables representing the
dynamic performance of the system, should be chosen to
be fed as the mputs. In addition to the proper input
signals, signal gains and fuzzy subsets should be defined.
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Fig. 5: FL.C output characteristics

It 15 common to use the output emror and the rate
derivative of the output as controller inputs (Lown, 1997,
Talaq and Al-Basir, 1999). In this study, the motor speed
deviation(A®), its derivative (A%) and the acceleration,
are considered as the mputs of the FLC Fig. 2. After and
signals pass through two appropriate gains or scaling
factors and then are fed to the FL.C. The output Al of the
controller 13 also scaled by passing through the output
gain, Fig. 3. To convert the measured input variables of
the FLC inte suitable linguistic variables, seven fuzzy
subsets are chosen. The membership functions of these
subsets have trapezoidal and triangular shape. Fig. 4
shows the membership functions. In this paper, both
inputs of the FL.C have seven subsets. Thus, one fuzzy
rule Table with forty-nine rules is constructed Table 2.
Fig. 5 illustrates the control surface. The center of gravity
method 13 employed.

The values of the constants, membership functions,
fuzzy sets for the input/output variables and the rules
used m this work are selected by trial and error to obtain
the optimum drive performance.

Neural networks
two-layer NN with a linear output activation function is

scheme: The single output of a

given by:

N, M,
ym—zvjo{zwﬁ.q)k+9WJ+9v (9)
k=1

J=1

where @,.....¢@, are the NN iputs, 0o(.) 18 a sigmoid

activation function, w; mput-to-hidden  layer
interconnection weights andv, are hidden-to-output layer
are bias. N, and N,

are the numbers of neurons in the input and hidden

are
interconnection weigh@, 0, m=12,. .

layers, respectively (Fig. 6).
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Table 2: Fuzzy inference rules

ele GN MN PN EZ PP MP GP
GP EZ PP MP GP GP GP GP
MP PN EZ PP MP GP GP GP
PP MN PN EZ PP MP GP GP
EZ GN MN PN EZ PP MP GP
PN GN GN MN PN EZ PP MP
MN GN GN GN MN PN EZ PP
GN GN GN GN GN MN PN EZ

Xg — Pk

Fig. 6: Newral network
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Fig. 7a: MRAC scheme for training the inverse controller
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Fig. 7b: Scheme for inverse controller
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Assuming that the system to be controlled can be
described by:

y(t +l) = g[y(z),...,y(t —n +l),u(1‘),...u(z —m):| (10)

We have trained off-line a direct neural network
model of the system. Then we used the MRAC scheme
(Fig. 7a) for the traming of an mverse neural network
model. This inverse model generates the control imput

B(t).
a(1) =g [ p(t+1).p(0). oy (t—n+1)u(t).u(t - m)]

Tt can be used for controlling the system by
substituting in the expression of the control 0(t) the
output at time t+1 by the desired input reference r(t+1),
Fig. 7b.

Anfis structure: Anfis (Adaptive-Network-based Fuzzy
Inference System) has proven to be an excellent
function approximation tool (Jang, 1993). Anfis
implements a first order Takagi-Sugeno (TS) fuzzy system.
The structure of this model 1s shown mn Fig. 8. In this type
of model, the condition part of a typical rule uses
linguistic variables as

REK): TF (x, is A" and x, is A,"™) THEN y=w" (11)

Where [ 1s the rule index and % denotes the kth
numerical example.

The conclusion part is represented by a numerical
value which is considered as a function of the system’s
condition expressed in the variables x,, X,,...X, A](l)j =1,
..myi=1..L. represent the fuzzy sets. These models are
suitable for neural-based-learning techmques as gradient
methods to extract the rules (Rahman et al, 2002) and
generate models with a reduced number of rules.

(12)

o' =gl %, ,x,)

The neuro-fuzzy algorithm uses membership
functions of triangular type in the present study. Fig. 8
llustrates the neuro-fuzzy scheme for an example with two
mputs (x1=e, x2 = Ae) and one output vanable (y =1T). The
information is propagated in three layers. In the first layer,
the two inputs are codified into linguistic values by the
set of triangular membership functions attributed to each
variable. The second stage calculates to each rule R,
its respective activation degree. In the third layer, the
inference mechanism weights each rule conclusion @™,
initialised by the cluster-based algorithm, using the
activation degree computed in the second stage. The error
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Rule

Fig. 8: Neuro-Fuzzy network

signal between the model inferred output value and the
respective measured value (or teaching value) y;, 1s used
by the gradient descent method to adjust each rule
conclusion. The algorithm changes the values of © to
minmize an objective function E usually expressed by the
mean quadratic error (13). Tn this equation, the value y, is
the desired output value related with the condition
vectorx(k) = (x,, X,,....X,). The element §* is the inferred
response to the same condition vector and computed by
Eq. (14).

B = L(3(x(0)) s (0] (13)
ijlﬁ”;ﬁ” (xf(k))a)m(k)
Hal)) =——- a4

Zilljjﬂ,gn (xi (k))

Equation (15) establishes the adjustment rule of each
conclusion by the gradient-descent method. The symbol
1 1s the learning rate parameter and the mdex i denotes
the number of leaming iterations executed by the
algorithm.

dE
o

(15)

a)(“(z#l):a)(‘f)(i)fna

The neuro-fuzzy control system: In the newo-fuzzy
control  system, which is based on the
feedback-error-learning scheme, each rule conclusion is
modified by the gradient-descent method to minimise the
Mean Squared Emror (MSE) E. In the implemented
controller, the neuro-fuzzy model minimises the mean
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Fig. 9: NF Membership function for the input e

Fig. 10: NF output characteristics

squared error generated by the Proportional controller (P)
to adjust each rule as indicated in Eq. 16.

E~(P(-ye?) "
o0H

e —a®i—
oY i+ =w"'({)-n
oo

Figure 9 shows the membership functions where the
inputs of the NF have seven subsets. Thus, one fuzzy
rule Table with forty-nine rules is constructed (same as
Table 2). Figure 10 illustrates the control surface.

RESULTS

A plant consisting of a three-phase permanent
magnet synchronous machine with sinusoidal flux
distribution rated 1.1 kW, 220 V, 3000 rpm is fed by a
PWM inverter. The machine is modelled in the dq rotor
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Speed responses of the FLC hased drive
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Fig. 11: Speed responses of the FLC based drive, with
torque disturbance at 0.04s

Speed responses of the ANN based drive
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Fig. 12: Speed responses of the ANN based drive, with
torque disturbance at 0.04s

frame the load torque applied to the machine's shaft is
originally set to its nominal value (3 Nm) and steps down
to I Nmat t=0.04 5.

The simulated speed response of the PMSM drive
system incorporating FLC is shown in Fig. 11. Tt is clear
that the drive can follow the command speed without
significant overshoot and undershoot and =zero
steady-state error. However, it is found that the motor
suffers from vibration which 1s indicated by the spikes in
speed response even at steady-state condition. For
HPVSD (High Performance Variable Speed Drive)
applications this is not acceptable. This chattering occurs
due to switching of the rules of the FLC. Figure 12 shows

the simulated speed response of the PMSM drive system
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Fig. 13: Speed responses of the NF based drive, with

torque disturbance at 0.04s based drive, with
torque disturbance at 0.04s
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Fig. 14: Speed responses with FL, ANN, based drive,
with torque disturbance at 0.04s NF and PI
controllers, with torque change at 0.04s

Reference curent 1g with FL, ANN, NF and PI controllers
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Fig. 15: Variation of reference current Ig, with FL, ANN,
NF and PI controllers NF and PI controllers,
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Electrical torques with FL, ANN, NF and PI contrellers
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Fig. 16b: Electrical torques (Zoom)

incorporating ANN controller. Tt is shown that the drive
response 1s similar to that of FL.C but the speed response
15 faster and the vibration of the motor 1s also reduced as
indicated by less spikes. Fig. 13 gives the simulated speed
response of the PMSM drive systems incorporating NF
controller. Clearly, it can be seen that the speed response
1s smoother than that of ANN but little more sluggish. To
compare the above mtelligent controllers with a
conventional PI controller, the speed response, the
variation of current I, and torque are shown in Fig. 14, 15
and 16, respectively. Where we can see that with the PI
controller the motor suffers from overshoot and
chattering. This proves that the performance of intelligent
controllers is more robust when compared to PT controller.

CONCLUSION
This study provides a useful comparison between

three different mtelligent controllers in terms of design,
implementation and performance aspects for Permanent
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Magnet Synchronous Motor (PMSM) drives. The
intelligent controllers were found to be robust as
compared to the conventional Pl controller. The
differences between these mtelligent controllers are:
design of conventional FL.C is easier than ANN and NF
controllers as it is based on simple linguistic control rules;
FLC need a relatively high computation as compared to
ANN and NF: (¢) FLC suffer from the chattering
phenomenon, which results in vibration of the motor; (d)
Drive response for ANN controller is faster than FL.C and
NF: and (e) NF controller provides the smoothest speed
response of the drive. From the above comparison, the
hybrid neuro-fuzzy controllers appear to be the best ones
since they provide the best performances and benefit from
the respective advantages of ANN and FLC.
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