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Fast Global Motion Estimation for Image Sequences

Z.E. Baarir and F. Charif
Lesia Laboratory of Research, Electronic Department, University of Biskra, Algeria

Abstract: Optical flow estimation is important in the area of computer vision. This study presents a fast
modified Horn and Schunck study for robust boundary preserving estimation of optical flow. Variational
approaches have addressed this topic and proposed methods that account for velocity boundaries at the cost
of significant computational complexity, which makes them inadequate for current real-time applications. The
proposed method 1s derived from  the benchmark algorithm of Horn and Schunck and Simoncelli’s matched-
pair 5 tap filters, such that it produces robust, fast and exact detection of motion boundaries and it is very
simple to implement. Experimental results using synthetic and real optical flow image sequences are presented
to demonstrate the effectiveness of our method in comparison to selected methods.
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INTRODUCTION

Optical Flow (OF) 1s the displacement of each image
pixel in an image sequence. [mage motion estimation is a
fundamental 1ssue in low-level vision and 18 used in many
applications such as robot navigation, object tracking,
mmage coding, 1image segmentation and motion
compensation. Recently, it is also used m medical imagery
mn measuring blood flow and heart-wall motion and in the
measurement of minute amounts of growth m com
seedlings. A great number of approaches for OF
estimation have been proposed mn the literature, including
differential, correlation-based, energy-based and phase-
based methods!. The benchmark of differential methods
is that of Horn and Schunck™. It is simple, it can be
imnplemented in real time and it 13 a fast method that
produces good estimates except at motion boundaries.
Several approaches have addressed this topic and
proposed methods that account for velocity boundaries
at the cost of significant computational complexity, which
makes them inadequate for current real-time applicationst™.

Another major concern 1s the approximation errors
that occur when the gradient-based approach is adopted.
These errors are due to imaccurate numerical
approximation of partial derivatives, as well as temporal
and spatial aliasing during sampling of the image
brightness function. In order to solve the above-
mentioned error problem, DBarron!! suggested a
spatiotemporal pre-smoothing with a spatiotemporal
Guaussian filter with standard deviation of 1.5 to the target
image are performed, first. Then, a four-point central
differences for differentiation (with mask coefficients
1/12(-1,8,0,-8 1 )(MHS). The total number of images

required 1s determined by the size of the dervative
kermnel and the level of smootling , given by the
standard deviation of the Gaussian, this required a
total of 15 frames to compute flow. In this study
we propose two possible ways to solve these
problems:

»  The first is to adapt the Horn and Schunck algorithm
so that it produces robust boundary preserving
estimates, while retaimng its simplicity and speed of
execution. We do so by generalizing the smoothing
filter in the Horn and Schunck algorithm so as to vary
with position and conform to local variations of
velocity™ ™,

»  The second is to estimate the spatial and temporal
derivatives of mmages by Simoncelli’s matched-pair

5 tap filters after smoothing by a simple averaging
kernel (1/4,1/2,1/4)17,

Horn and schunck formulation: In our study, the Horn
and schunk’s differential method has been employed™,
which 1s mamly based on optimising the energy function
that 15 a function of an mmage constraint and a
smoothness constraint:

_[[[(Et +uE,_ + vEy)2 +A (g +ul + v +v3)}_1x.dy 1

Where: E = E (x,y.t) denotes image brightness function at
time t, (u,v) designates optical velocity ,(u, .u,) its spatial
derivatives, (B, .E, ,E ) the spatiotempcral image
brightness derivatives and A is the weighting parameter
between the two constraints. The choice of a fixed value
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for this parameter remains to be a very crucial problem in
such motion estimation algorithms. Tterative equations are
used to mmnimize (1) and obtain image velocity at each
image location:

n+l
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vt =vi —aE,
Where:
_ =t = 2 2 2
a=(Eu +E v +E )} +E;+E))

Where i denotes image position, u’ and v*, denote
mitial velocity estimates at 1 (typically zero ), n 1s the
iteration number and (yivi) is the neighbourhood
averages of (u;, v))at I. The Hom and Schunck technique
is widely used to estimate OF , but it also takes a
comsiderable number of iterations to converge .The
modified Hom and Schunck algorithm presented in this

study adds one step to the classical algorithm: a
momentum term which considers past velocity is
added to (2):
u™ =T —oE, +put —uth) 3
v =yt - B, + (v - vl

The range of 11 is between O and 1.

Differentiation: Horn and Schunck differential techmque
compute velocity from Spatio-temporal derivatives of
Tmage intensity or filtered versions of the image and the
performance of this approach weighs heavily on the
choice of temporal filter™*'****>7 In this study we
present tow techniques to estumate the spatial and
temporal derivatives of images.

Horn and schunck.’s derivatives (Hs): The original

method of Horn and Schuck (HS) described in™™? use just
2 images (E(t) and BE(t+1)) to estimate intensity derivatives
Precisely, we use the following masks:

P el

And then the partial derivatives are calculated by:

-1 1
-1 1

1
-1

1
-1

11
11

1

Y

1

4

_1
4

E, =M, *(E()+ E(t + 1))
E, =M, *(E(t)+ E(t + 1))
E, =M, *(E(t+1) - E(t))
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Simoncelli.’s derivatives (SHS): In this study we estimate
the spatial and
Simoncelli’s matched-pair 5 tap filters after smoothing by
a simple averaging kernel (1/4,1/2,1/4) with superior
accuracy to the Gaussian 1.5 filter and requires 7 frames™.
Simoncelli  balanced/matched  filters!”
presmoothing (p;) and differentiation (d;) ; The prefiltering
kemel’s coefficients were (0.036, 0.249, 0.431, 0.249, 0.036),
while the differential kemel’s coefficients were
(-0.108,-0.283, 0.0, 0.283, 0.108). For example, Ey 1s
computed by applying p;in the t dimension, then p;to
those results in the x dimension and fmally d; to those
results in the y dimension .E, and F, are computed m a

temporal derivatives of images by

combine

similar maner.

Estimate neighborhood The estimate
neighborhood average (ui,vi ) at i is computed according
to a smoothing filter () adapted to local variations of

velocity . It will be used in iteration (3), as®®?

average:

w=vdu}jen)
v =wdviljen)

)

Where m; is the set of neighbors of i. The
performance of this study weighs heavily on the choice of
smoothing filters . We explore therefore several
smoothing filters.

Intensity-weighted average: In tlus study, = 1
produces Intensity-weighted average and it can be
computed as follows:

_ 1
1+[E, -E,
= 71 uJ
1ETE g

1+[E -E]

ke

This 18 an 1sotropic diffusion in all digital directions
allowed by the form of 1, eight directions in the case of
an 8-neighborhood™. A similar formula is used for v.

Velocity-weighted average: In tlus study, ¥ = 1,
produces velocity-weighted average and it can be
computed as follows:

_
1+‘u] -u;
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Optical flow results of different techniques on the sinusoidal 1 sequence. From upper left to lower right, frame

lin the sequence, correlation between two frames (1 and 2), the correct optical flow , HS optical flow, MHS optical
flow, Our method optical flow with ¥y, Our method optical flow with 'Y, Our method optical flow with ¥y

Where [ =1 is introduced to account for the possibly
small range of velocity valuest™. A similar formulais used
for v.

Horn andschunk’s filtering: In this subsection, r = iy
is Horn and schunk’s filtering and it can be computed
according to the mask:

1/12
1/6
1/12

1/6 1/12
0 1/6
1/6 1/12

My =

And then the
calculated by:

estimate neighborhood average is

W, =u*My (8)

A gimilar formula iz uged for v.

Proposed hornandschunck algorithm: The proposed
algorithm is outlined as follow:

Begin
For each pizel {i,i) do
-calculate the values £x(, i), Byl Hand B4 j) using (HS) or (MHS)
or (SHS) derivatives.
-nitialize the values u (110 and w(1,1) to zero
End {for}
-choose asuitahle weighting value A and p.
While not converged studydo
For each pixzel (1,7 studydo
-compute | ,‘_-’i (withp or Yy or Y.

-update u {1,7), wii.)) using (3)
End {for}
End {while}
End
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Experimental results: This section shows some of the
results obtained using the method described in this study.
Comparisons with some of the commonly cited techniques
are also made (Horn and Schunck, Barron et al (MHS),
Uras et al. Anandan, Lucas and Kanade and Nagel™). A
variety of images have been tested, including synthetic
image and different types of real images.

Synthetic image sequence: To test the algorithms, we
computed optical flows on synthetic image sequence with
the true displacements known at every pixel location. We
measured the average differences between correct
velocity . and an estimate v, using the angular
distance introcuiced by Barron and al with 100% density™:

LOME arcos(v'c.z) ©)

The average emrors and standard deviations of &g
were calculated by neglecting a 20-pixel-wide boundary.
Figure 1 shows the results of different techniques on the
image Sinusoidal sequence with velocity V= (1.585,0.863)
pixels/frame. The first two images in the top row are frame
lin the sequence and the comrelation between two frames
{1 and 2) from the Sinusoidall sequence. The third Image
in the top row is the correct optical flow field. From
Fig. 2, we can see that it is difficult to choose a fixed value
of 0.1 =4 =0.4 for all the sequences. However, a range
of A seems to yield to best compromise for the tests that
were performed on test image. The optimal A value of the
smoothness constraint was set to 0.19 for all the
experiments conducted in this study.

The modified algorithm was run several times with
the momentum parameter p set to different values. The
algorithm was considered to have converged when the
average error became less than 0.1° These results are
plotted in Fig. 3,itis seen that for a momentum equal to
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Fig. 2: Sinusoidall: Impact of various filter and different values of A (the smoothness constraint) on motion estimation

with P (a) average error, (b) standard deviation

Fig. 3: Sinuseidall: Impact of various momentum parameter with ¥, (a) average error, (b) standard deviation

Table 1: Summary of sinusoid 2D velocity results

Average Standard Frames
Technique error deviation used
HS [2] 4.19° 0.50° 2
MHS [2] 2.55° 0.59° 15
Uras et al[2] 2.59° 0.71° 15
Anandan [2] 30.80° 5450 2
Lucas and kanade[2] 2.74° 0.16° 15
Nagel[2] 2.55° 0.93° 15
SHS with WV, 0.0204° 0.0160° 7
SHS with Py 0.0208° 0.0178° 7
SHS with Wy 0.0197° 0.0168° 7

0 and 0.35 the algorithm had not converged after more
than 300 iterations. For larger momentums such as
0.95and 0.85, the algorithm was performed better and
convergence was reached i a smaller number of iterations
(11
0.75 and 0.55 , the behavior became more and more volatile

iterations). When the momentum was decreased to

and the algorithm took more iterations to converge
(30 iterations). Hence, it became clear for thus particular
example that the optimal momentum must be in the vicimty
of 0.9. The average errors ,standard deviations and the
mumber of image frames used of the computed flows for
above mentioned methods applied to Sinusoidall are
shown in Table 1, which are generally very good , but our
method give smaller e rrors and is performed better than
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the original Horn and Schunck method (HS) )) and the
modified (HS) method by Barron and af (MHS). So that,
the wvelocity-weighted average is the best technique for
all the tree methods mentioned in this study, as shown in
Fig. 4 (histograms of errors).

The three techmiques (P, ¥y and ¥,y have nearly the
same the velocity-weighed
average T+ 1s more convergent than the other two , as
shown mn Fig. 5. Furthermore, our method offers a faster
conwvergence speed, typically around 10-30 iterations are

CONVergence, however

required, but the number of iterations for Hom and
Schunclk’s approach (HS)Mand Barron and al.’s approach
(MHS)!" were both set to 500.All the programs apart from
the author’s were obtained from the ftp site at
ftp:/fesduwo.ca/pub/vision.  Our  algorithms
implemented using MATLAB.7.

are

Real image sequences: Three real inage sequences have
also been tested and good results have been obtained.
Figures 6-8 show the experimental results of the flow
fields produced by our method on the three real image
sequences: Hamburg Taxi, Miss America and SRI
sequence [2.10]. Fig 6, 7 and 8a show three static
frames  grabbed from three standard real image
sequences, Fig. Ga, shows the six frame of the ‘Miss
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Fig. 4: Sinusoidall: From upper left to lower right, error histograms for our method with ‘¥ ;; and p=0.95, interpolated, error
image, Horn and Schunck algorithm with p =0, interpolated and error image
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Fig. 5: Our method curves of convergence

America’ image sequence, Fig .7a shows a frame of the
SRI image sequence (in this sequence , the camera
translates parallel to the ground plane. This sequence ig
very challenging because of poor resolution, considerable
occlusion and low contrast. The maximum velocity is
approximately 2 pixel/frame )and Fig. 8a shows a frame of
the Hamburg Taxi image sequence (this sequence
contains three principal moving objects : #)the taxi turning
around the corner(l pixel/frame); ) a car in the lower left,
driving from right (3 pixels/frame); ») a van in lower right
driving right to left(3 pixels/frame)) .Since it is very
difficult to determine the true of for real images .Usually
only qualitative testing is performed. The wvalidity of
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motion estimates for these real sequences can be verified
by using these estimates in a motion- compensated
interpolation .For this task, a spline interpolation iz used.
The impact of the propozed method using various filters
on motion-compensated prediction and prediction erroris
shown in Fig. 6. From thiz Figure, we can see that our
method-according to the Bayesian criteria method™-is
more accurate and precise; furthermore, it preserves
velocity boundaries. Note Bayesian criteria method is
8.5617d Bpenalty in the peak prediction error as
compared with our method (our method with different
filters (¥, '¥; and 'FY) is virtually identical). Figure 7
{(b-d) and Fig. &b show the computed flow fields
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Fig. 6: Comparison of our method: From upper left to lower right, frame 6 and & of Miss America, convergence
curve, inferpolated and Errorimage as well as optical flow using ¥, 'Y, 'V, respectively
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Fig. 7: Our method with velocity-based adaptive average: From upper left to lower right, frame 13 of SRI” optical flow,

interpolated and error image

The
Fig. 8b-d shows the preservation of motion boundaries by
it has the best performance-for the
Hamburg Taxi sequence.The motion boundaries are well
delineated as shown in the zoom in at the taxi ,car and a
van. From this Figures, we can zee that three moving
objects were clearly captured and located by our method

corresponding to Fig. 7 and 8a, respectively.

¥y-because
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with filter ¥ ;moreover , our method -according to HS
and MHS"-ig more accurate and precise.

Medical image sequences: The results of two medical
image sequences are presented in Fig. 9 and 10,
respectively. Flow of the image frames is presented for
each Image sequence.The overall results obtained from
our algorithm are very interesting and reasonable.
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Fig. 8: Zoom in at the car, taxi and a van: Our method with velocity-based adaptive
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Fig. 9: Our method with velocity-based adaptive average: From upper left tolower right, frame 6 of medical sequence
N°®: 1, optical flow, convergence curve, interpolated, error image and error histogram
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Fig. 10. Our method with velocity-based adaptive average : From upper left to lower right, frame 3 of medical sequence
Ne: 2, frame 4 of medical sequence N°: 2, optical flow, interpolated, error image and error histogram
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CONCLUSION

In this study we have developed a fast and reliable
image motion estimation method using Hom and Schunck
algorithm and Simoncelli’s matched-pair 5 tap filters and
we have formulated and experimented with different filters
(¥, ¥. and ¥ for fast boundary preserving estimation of
optical flow using synthetic or calibrated image sequence
and different types of real image sequences. The modified
method (SHS) lacks the capability of the original Horn and
Schunck method to fill m motion estimation where
gradient information 1s poor. On the other hand, the
modified method produces better velocity estimates at the
motion edge. Compared with the original Homn
andSchunck method, the modified Horn and Schunck
method produced a motion velocity signal of higher
amplitude. Furthermore, Our method (SHS) with the
velocity-weighted average has the best performance when
compared to the Hom and Schunck method (HS), the
modified (HS) method by Barron and al (MHS) and
Bayesian criteria method™'®. Cur method has some good
features; in particular, it is very simple to implement, it is
also very fast and has an exact detection of motion
boundaries.
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