Asian Journal of Information Technology 5 (3) : 324-338, 2006

© Medwell Online, 2006

Solid Deformation Modeling Techniques

Syaiful Nizam bin Yahya, Norhaida binti Mohd Suaib, Abdullah bin Bade
and Siti Mariyam Binti Hj Shamsuddin
Department of Computer Graphics and Multimedia, Faculty of Computer
Science and Information System, Universiti Teknologi Malaysia
81310 UTM Skudai, Johor, Malaysia

Abstract: Non-rigid solid object deformations techniques have been widely used in the computer graphics
community to simulate and animate deformable objects. Both offline and real time applications have already
benefited from deformation techniques evolutions. This paper discussed the most popular geometric
deformation techniques used for both real time and offline applications such as virtual surgery and motion
pletures. Deformations techniques are divided mto two sub deformation type which 1s non-physical based
deformations and physical based deformations. Computer Graphics, Physically Based Modeling, Animation

and Virtual Reality.
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INTRODUCTION

Non-rigid objects modeling or deformable objects
modeling have long been studied i the field of computer
graphics. In 1987, Terzopaulos presents a deformable
object modeling for virtual reality application in computer
graphics. Since then, deformable object modeling have
been actively studied producing various deformation
modeling techniques for different types of deformable
objects such as solid objects, fluid objects and gaseous
objects. Different deformation features like fusion, brittle,
fracture, cut, plasticity, cloth ammation, fluid simulation
and gaseous simulations further achieved by expanding
deformation techmques, though are not fully covered by
this discussion.

Chapter 2 describes the motivation for physical
based deformation especially for solid volumetric objects.
Chapter 3 discussed most popular deformation techniques
which are divided into two subtopics, non-physical
based deformation modeling and physical based
deformation modeling.

MOTIVATIONS

In reality, no body is rigid, but for many bodies, the
assumption of rigidity 1s a close approximation to the
actual physical conditions. In some physical applications,
the objects are considered to be deformable bodies, ones
for which the rigid body analyses do not apply.

One of the holy grails of computer graphics 1s to
accurately portray the real world based on physical
principles using computer graphics technology. This
includes the modeling of deformable object behaviors
such as human tissue, gelatin, rubber, sea water, smoke
and other non rigid materials. The problem of deforming
various materials has been long studied in the field of
computer graphics.

Expressing the physical behaviors of the deformable
material 18 not trivial. First, one has to measure the
elasticity of the real material. Achieving precise results 1s
very hard. Even with 2 materials with the same mass and
volume does not behave exactly the same. Based on this
analysis, one has to express the continuum between the
mass’s atomic planes m order to achieve accurate results.
Because of even a small mass consist of huge number of
atoms, another approximation method to describe the
expression is desired. This problem domain has been
tackled in the field of physical engineering for quite some
time now.

In computer graphics, the interest is to model the
behavior of the deformable objects as a visual in the
rendering device. Direct integration between physical
principal of deformable material and computer graphics 1s
a major problem due to the linitation of current
computation capacity. The limited number of floating
pouts available on the computer decreases the achievable
accuracy. As the accuracy decreases, so 1s the stability
and robustness of the systems. Certain application
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requires the systems to perform the simulation as a real
time animation, thus liniting the available computation
time for each frame. Since the computational time
mncreases proportional to the imcreasing number of
represented material elements, a direct solution would be
to use much lower elements representation by simplifying
the object. For some environment, for example virtual
surgery, the systems cannot afford too much maccuracy
by object simplifying as the risk would be too high.

As technology matures, the demand for animation
of complex behaviors grows. Deformable objects such as
hair, cloth and gelatin are difficult to animate using
traditional key framing as the nature of such system is
very complex. The traditional key framing process is very
tedious and does not guarantee accurate results. Physical
based solution usually doesn’t permit real time simulation
as the computational cost is very high. Because of its
high degree of accuracy, physical based solution often
found its application in offline rendering application such
as ray tracing packages where realistic results are desired.
For real time animation, things are a bit different. Tn virtual
reality field, user interactions are a requirement. The
system must compute the material deformations, provide
feedback to the user and perform other computations all
in a limited time. Because of unpredictable nature of the
simulation, assumption and pre-computation are not quite
the solutions. Since the interest is real time simulation, the
results usually behave a bit umrealistic as the system
traded accuracy over speed.

For effective surgical simulation, things are even
more difficult. Not only do we need real time interactive
graphics, but the objects m the scene should also extubit
physically correct behaviors true to the behaviors of real
human organ and tissues. The performance of a
deformable modeling system often depends on multiple
criteria. Tweaking and optimizing the deformation
modeling system to achieve desired performance and
accuracy provides a techmcal challenge in the field of
computer graphics.

DEFORMATION MODELING

In this chapter, elementary theories and techniques
that are relevant in volumetric object deformation
are discussed.  Literature coverage includes both
non-physical based deformation modeling and physical
based deformation modeling of deformable objects.

Non-physical based deformation modelling: 3d designer
requires precise deformation tools which give them total
deformation control. These tools usually come as purely
geometric modification tools which doesn’t have any
physical justification in its deformation process. The
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output relies on the skill of the designer and how much
control the deformation technique provides. Three most
popular non-physical based modeling techniques are
discussed wiuch 1s global deformation, parametric
representation and free form deformation.

Global deformations: In 1984, Barr introduced global
deformation techmque by extending the classical linear
transformation operation'. The idea behind this method
13 to apply another transformation to existing
transformation before it is applied to the object. The
available deformations are tapering, twisting and bending.
Given a formula defimtion for the transformations,
X = Fix), Y = Fywhere (x, y, ) are vertex in undeformed
state and (X, Y, 7) is the deformed vertex. To taper an
object, choose a tapering axis and differentially scale the
other two components setting up a tapering function
along this axis. For example of tapering an object along its
Zaxis, X =1x, Y =1y, Z = z Where is the tapering function
either linear or non-linear. To globally twist the
object, use differential rotation just as tapering
15 a differential scalng. To twist an object
through an angle 6 about the z-axis, we apply
(X, Y, Z)=(xcosB - Ysm0, xsinb +ycos 0, z) By
varying the amount of rotation as a function of z,
the object will become twisted. This Is done by setting
6 = f (z) where f(z) specifies the rate of twist per unit
length along the z axis. To bending an object along y axis,
the deforming transformation is given by

X=x
—sinf(z—k )+ y, Puin =V = Vo
Y={—sinf(z—k ")+ y, +cos@(y—y, ) Y=< Vain
—sinf(z—k ")+ y, +cosB(y—y__) V> Vo
cos@(z—k H+k™ min =Y Vi
Z = COSQ(Z_k71)+k71+Sin9(y_ymin) y<ymin
cosB(z—k )+ k7 +sinB(y—y_ ) Y2 Voo

where Vi, <V<V... is the bending region, K™' is the
radius of curvature of the bend, the center of the bend 1s
aty = v,, the bending angle is 0 =K (y'-y;) and

Vo VE Yo
V=9¥ Yoo <Y <V
ymax y 2 ymax

Global deformation can be easily implemented into
existing application since the deformation transformation
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Fig. 1: Structures deforming global deformation example.
Top, original cube and Utah teapot followed by

tapering, twisting and bending deformations®

and classical transformation are similar m nature. The main
set backs for this method is that the deformation is
limited to the 3 previously mentioned particular types
of deformation.

Parametric representations : By defining the object as
parametric surfaces, users are given the ability to deform
the surface by altering the functional deseription of the
surface in the sense of displacing the control points. The
first representational form or basis is due to Bézier, who
was the originator of an early cad system, UNISURF used
by Renault, a French car manufacturer.

Given a set of n + 1 control points Py, P,,..., P,, the
corresponding Bézier curve (or Bermnstein-Bézier curve) is
given by

C(1) = T BB, (1),
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where is a Bernstein polynomial and. These functions are
scaled or weighted by the network of control vertices, to
form the surface patch. A cubic Bézier patch, an extension
to the Bézier curve, is given by,

EB

it

Quv)=2, 2.

=0 j=0

(WB,(v)

Bézier patch always passes through the first and last
control points and lies within the convex hull of the
control points. Undesirable properties of Bézier patch are
their numerical instability for large numbers of control
points and the fact that moving a single control point
changes the global shape of the patch. The former is
sometimes avoided by smoothly patching together
low-order Bézier patch. The movements of the control
points are constrained by continuity constraint between
control points. These continuity constraints introduced
two undesirable effects. First, undesirable plateau effect
in the deformation is introduced if the deformation only
displace the control points and not both control points
and the continuity constraints. Second, it is impossible to
since the continuity
constraints may be propagate the patch further a field.

A generalization of the Bézier curve 1s the B-spline.
As an improvement over the Bézier representation,
B-spline are superior over the Bézier method within the
context of deformation as B-Spline does not require
continuity constraint and give the user the ability to
perform localize deformation. Since the absence of
continuity constraint, B-spline curve restricted the
deformation by control points to only specific known
region thus giving better control to the deformation made
by the user.

achieve localize deformation

Free form deformation: In 1986, Sederberg developed a
technique that is more flexible than global deformation
known as free form deformation”. This technique defines
a free-form deformation of space by specifying a trivariate

Fig. 2: Left; surface

Original
Deformed surface
Rational B-Spline

patch.  Right;
patch using Non-Uniform
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Beézier solid, which acts on a parallelpiped region of space.
Instead of deforming the object directly, this technique
embeds the object in a defined space that is then
deformed. The object is deformed according to the
deformation the embedding space undergoes. The
embedding space called FFD block, is hyperpatches
connected together to form a piecewise Bézier volume. A
single tricubic Bézier hyperpatch is defined as

ZpijkBi(u)Bj (V)B, (W)

k=0

[

q(u,v,w) =

3
i j=0

Il
[=]

where B; (p), Bi(v) and B,{w) are the Bernstein polynomials
of degree 3. The undeformed FFD block consist of a
rectangular lattices of control points arranged along three
mutual perpendicular axes. The end result is a
parallelepiped with lattices as control points attached. To
deform object using free form deformation method, first
we must determine the positions of the vertices in lattice
space. Then deform the FFD block by displacing the
control points from the undeform lattice positions. Finally,
determine the deformed positions of the vertices by
finding the relevant hyperpatch within which the vertex
islocated and convert to the local coordinate system of
the hyperpatch.

This method can be used to apply localized
deformation or to deform the whole object. Multiple FFD

Fig. 3: Right, local free form deformation. Left, global free
form deformati on™

(L)

1. ; .

Fig. 4: Hirota’s volume preserving method. Letf, original
shape. Center, after free form deformation is

applied. Right, unconsirained lattices are displaced
to preserve original volume®
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block can be define in piecewise manner to perform
deformation that is impossible using just a single FFD. For
modeling complex deformation and specific small region
of deformation, careful placement of FFD block by the
user is required. But when it does, the large number of
FFD blocks would render the technique inefficient.

Unlike free form deformation by Sederberg,
Coquillart*s extended free form deformation does not
define any specific FFD lattice space®. Coquilart states
that parallelepiped shaped FFD block constraint the shape
of the deformation and introduced nonparallelepiped
lattices as the EFFD lattice space. To construct the EFFD
block, the users are required to weld several elementary
blocks, which is the classic FFD blocks, together. As with
FFD, to perform deformation, EFFD lattices have to be
displace. The deformation processing is very similar to
that of previously discussed FFD except that unlike FFD,
in EFFD, we cannot assume simple connection between
the 2 adjacent spaces because lattice space of EFFD does
not aligned with EFFD object space.

To preserve the total volume of solids undergoing
free form deformation, Hirota uses discrete level-of detail
representations®. Given the boundary representation of
a solid and user-specified deformation, the algorithm
computes the new node positions of the deformation
lattice, while minimizing the elastic energy subject to
the volume-preserving criterion. During iterations, a
non-linear optimizer computes the volume deviation and
its derivatives based on a triangular approximation, which
requires a finely tessellated mesh to achieve the desired
accuracy. To reduce the computational cost, Hirota
exploit the multi-level representations of the boundary.
This technique also provides interactive response by
progressively refining the solution. Furthermore, it is
generally applicable to lattice-based free-form deformati on
and its variants. This method is capable of large
deformation, efficiently. It gives designers and engineers
real-time visual feedback and an intuitive physical feel of
free-form  solids, during geometric design and
shape modification.

Exact shape and point placement is difficult to
achieve with traditional free form deformations. This is
due to the free form deformation interface which permits
the users to deform using only control points. Hsu ef al.,
introduced a free form deformation method that allows
user to control a free form deformation of an object by
manipulating the object directly instead of control points
1, The method computes the necessary alteration to the
control points of the free form deformation spline
using least square approach that will induce the
point’s placements.
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Fig. 5: Deformable teapot iz animated using dynamic
global free form deformation™
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Faloutsos ef al.. extends the use of free form
deformation to a dynamic sefting by coupling
physical dynamics with free form deformation™ The
method is based on parameterized hierarchical FFDs
augmented with Lagrangian dynamics, provides an
efficient way to animate and control the simulated
characters. Objects are assigned mass distributions
and elastic deformation properties, which allow them to
translate, rotate, and deform according to internal and
external forces. First, the dynamics generalization of
conventional geometric free form deformation is
formulated. The formulation employs deformation modes
which are tailored by the user and are expressed in terms
of free form deformations. Second, the formulation
accommodates a hierarchy of dynamic free form
deformations that can be used to model local as well as
global deformations. Third, the deformation modes can be
active, thereby producing locomotion.

Physical based deformation modelling: Physical base
modeling uses physical principles to model realistic
behavior of deformable models. This method uses more
computational power than non-physical based method
but the results is more convincing than the non-physical
based method. Integration between physical principle and
computer graphics for deformable object modeling was
pioneered by Terzopoulos®'™. Two most common and
well known physical based methods are finite element
method and mass spring method. On the other hand, two
of the most recently proposed methods for physical based
modeling are known as mesh free method and gas based
method. Here, basic physical based method for
deformable object is discussed along with each method
subsequent extension techniques.
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Finite element method : The behavior of deforming
objects is the topic of continuum mechanics, a branch of
mathematics that tries to capture physical phenomena of
continuous media in precise mathematical formulations.
One branch of continuum mechanics, nonlinear elasticity,
provides the mathematical description of how objects
deform.

Continuum mechanics describes materials in terms of
partial differential equations. The Finite Element Method
(FEM) is a discretization method. It transforms a
continuous, infinite-dimensional problem into systems of
equations with a finite number of wvariables. For
mechanical problems, the FEM discretizes the equations
of motion; hence it delivers a system of ordinary
differential equations, i.e., equations where time still has
a role. There are two ways to deal with these systems:
compute the evolution of the system, or fry to find the
final equilibrium solution directly. If the final state of the
system is all that matters, a static method can be used. By
assuming that velocity and acceleration are null, the
system of differential equations is changed into a normal
system of equations. For many mechanical problems,
these equations can be stated in terms of finding minimum
energy solutions. If transient effects do matter, then the
evolution of the differential equations must be calculated
using a time-integration method. B azically, the problems
come from the simulation of soft tissue. Although
simulating the full mechanical characteristics of soft tissue
iz not possible in an interactive sefting, it iz insfructive to
study exactly what kinds of characteristics are ignored in
the szimulations. It is not surprising when most
implementation tends towards simplifications since the
constraints of an interactive simulation do not allow for
much sophisti cation.

To sum it up, the finite element method finds an
approximation for a continuous function that satisfies an
equilibrium condition which follows from the variation or
weak formulation of the problem. The discretization of the
problem consists of decomposing its domain into a mesh
of carefully selected elements, joined at discrete nodes.
The solution of the variational equation iz expanded as a
weighted sum of finite element bazis or shape function on
each element. Continuity across element boundaries is
achieved by sharing discrete nodes and thus finite
element weights. As a next step, the contributions of each
element are aszsembled into a global system of equations
which then can be solved for the shape function weights.

To analyze the stress in various elastic bodies,
calculate the strain energy of the body in terms of nodal
digplacements and then minimize the strain energy with
respect to these parameters-a technique known as the
Ravleigh-Ritz. In fact, thiz leads to the same algebraic
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Fig 6: Three type of geometry discretization using
gmesh™

sliced
is

its

and
Happy buddha

Fig. 7: Original happy buddha
tefraheralized version.
discretized using tetgen™

equations as would be obtained by the Galerkin method
but the physical assumptions made (in neglecting certain
gtrain energy terms) are expozed more clearly in the
Rayleigh-Ritz method.

In all cases, the finite elements steps are:

Evaluate the components of strain in terms of nodal
dizplacements.

Evaluate the components of stress from strain using
the elastic material constants.

Evaluate the strain energy for each element by
integrating the products of stresz and strain
components over the element volume.

Evaluate the potential energy from the sum of total
gtrain energy for all elements together with the work
done by applied boundary forces.

Apply the boundary conditions, e.g., by fixing nodal
displacements.

Minimize the potential energy with respect to the
unconstrained nodal digplacements.
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Fig 8:Taxonomy for finite element method from
mechanical physics view. [hitp://caswww.colorado.
edu/courses. d/ AFEM.d/Home.html ]

Solve the resulting system of equations for the
unconstrained nodal displacements.

Evaluate the stresses and strains using the nodal
dizplacements and element basis functions.

Evaluate the boundary reaction forces {or moments)
at the nodes where dizplacement is constrained.

Solid elements are three-dimensional finite elements
that can model solid bodies and structures without any a
priori geometric simplification. Finite element models of
this type have the advantage of directness. Geometric and
constitutive azssumptions required to effect dimenzionality
reduction, for example to planar or axisymmetric behavior,
are avoided. Boundary conditions can be more
realizstically treated.

Another attractive feature is that the finite element
mesh visually looks like the physical system. This
directness does not come for free. It is paid in
terms of modeling, mesh preparation, computing and
post-processing effort. To keep these within reasonable
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Fig. 9: Top,the three standard solid element geomefries:
tetrahedron (left), wedge (center) and brick (right).
Only elements with corner nodes are shown.
Middle, regular 3D meshes can be built with cube-
like repeating mesh units. Meshes are built with
bricks, wedges or tetrahedra. Bottom, two
nonstandard solid element geometries: pyramid
and wrick [w{edge)+{brick]. Four faces meet at
corners 5 and 7, leading to a szingular metric.
[http://caswww.colorado. edu/courses. d/AFEM. d
/Home.html

limits it may be necessary to use coarser meshes than with
two dimensional models, which in turn may degrade
accuracy. Thus finite element wusers should not
automatically look upon zolid elements as snake oil. Its
use should be restricted to problems and analyses stages,
such ag verification, where the generality and flexibility of
full 3D modelsis warranted.

Two dimensional {(2D) finite elements have two
standard geometries: quadrilateral and friangle. All other
geometric configurations, such as polygons with five or
more sides, are classified as nonstandard or special. Three
dimensional (3D) finite el ements offer more variety. There
are three standard geom etries: the tefrahedron, the wedge,
and the hexahedron or brick. These have 4, 6 and §
comers, respectively, with three faces meeting at each
comer. These elements can be uzed to build topologi cally
regular meshes. There are two nonstandard geometries
that deserve consideration as they are occasionally useful
to complete generated 3D meshes: the pyramid and the
wrick. (The latter term is a confraction of wedge and brick)
These have 5 and 7 corners, respectively. One of the
corners i special in that four faces meet, which leads to
a singular mefric there. This singularity disqualifies these
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Fig 10: A simplefinite element method deformable object
in action. Image is taken from project
Xplodar[http://mesnausk.org/nearaz/projXplod
ar.html]

elements for use in stress analysis in highly stressed
regions. However they may be acceptable away from such
regions and in vibration analysis. Both standard and
nonstandard elements can be refined with additional mid
side nodes. These refined elements are of interest for more
accurate stress analysis. Of course, the mid side nodes
may be moved away from the midpoints to fit curved
geometries better. The best choices of elements and
interpolation functions depend on the object shape,
convergence requirements, degree of freedom, and frade-
offs between accuracy and computational requirements.
In general, using elements that have more nodes and more
complex interpolation functions require fewer elements for
the same degree of accuracy.

Consider isoparametric solid elements with three
translational degrees of freedom (DOF) per node. Much of
the development of such elements can be carried out
assuming an arbitrary number of nodes n. In fact a general
template module can be written to form the element
stiffness matrix and mass matrix. Nodal quantities will be
identified by the node subscript. Thus {%,, ¥,, 2, } denote
the node coordinates of the i™ node, while {u, , u;,u;}
are the nodal dizplacement DOFs. The shape function for
the ith node iz denoted by N; These are expressed
interm of natural coordinates which vary from element
to element.

High contrast red denotes high stress area while
bright white denotes less siress area. Even though the
simulation iz performed in real time manner, notice that the
deformable object iz low in polygons.

Forces must be numeri cally integrated over volume or
surface at each timestep, requiring a lot of computation.
Thiz makes finite element method limited use in real time
application despite the fact that finite element method
provides better deformation accuracy. Because of its
complexity nature, it iz difficult to implements and
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optimize. Discretizing the object is also quite difficult.
Discretization methods chose for real time applications are
based on the ability of the discretizer to maintain high
geometrical accuracy with less internal elements using
single simple element type (usually tetrahedron). Large
deformation and topological changes requires the system
to recompute the large stiffness matrix. Fimte element
method requires less node pomts compared to mass
spring systems to achieve similar degree of deformation
accuracy. This results to a smaller linear system which can
be solved in less time.

Terzopoulos used fimte element modeling technique
to discretize the deformable objects for its offline
] The idea is to model deformable cbjects
using differential equation analogous to the standard
mass-spring-damper equation. Dynamics are computed
from the potential energy stored in the elastically
deformed body using finite difference discretization
method. Later on, Terzopoulos extends the work to
mclude simulation of inelastic object behaviour such as
plasticity, fracturé”, heating and melting'" .

Nielson and Cotin achieve real time finite element
method deformation by lots of preprocessing and
equation systems condensation!'”. By solving a smaller
linear system, the implemented systems achieve 20 frames
per second for models with 250 nodes on four Mips R4400
processor Silicon Graphics ONYX.

Although fast fmite element models have been
developed for medical applications!', less attention has
been paid to displaying time dependent deformations of
large size finite elements models in real-time ' introduces
two numerically fast techmques for real-time sunulation of
dynamically deformable (i.e. time dependent deformations)
3D objects modeled by FEM; modal analysis and spectral
Lanczos Decomposition.

Existing techmques of deformable modeling for real
time simulation have either used approximate methods
that are not physically accurate or linear methods that do
not produce reasonable global behavior. Nonlinear fimite
element methods (FEM) are globally accurate, but
conventional FEM is not real time™ apply nonlinear FEM
using mass lumping to produce a diagonal mass matrix
that allows real tune computation. They propose a scheme
for mesh adaptation based on an externsion of the
progressive mesh concept, called dynamic progressive
meshes to minimize unnecessary computations.

Krysl et al. uses adaptive local finite element mesh
refinement using wavelet theory to accelerate fimte
element deformation’'®. The refined mesh is nested in the
refinement hierarchy, which simplifies the incorporation of
multi-grid solvers. The method exploits refinement of
basis functions rather than refinement of elements. It 1s in

simulator’
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spirit much closer to some recent developments in the
design of meshless methods. Tt is suitable in any number
of spatial dimensions and for a much wider variety of
finite element types than any standard mesh refinement
algorithm.

Finite elements method benefits from a solid
background and established techmique, books and wvast
literature. For computer applications, there are a lot of
libraries for solving finite elements. Applications to
discretize geometry object into sets of elements are also
widely available. Compared to mass spring method,
integrating actual tissue properties are easier with fimte
element method. Solutions for large linear or non linear
systems using numerical techniques already exist. With
constraint, some assumption and optimization, real time
possible with current mainstream

element method allows parallel
simulation; enabling

computation 1s
hardware. Finite
computing techniques for its
scalable simulations.

Finite element method 1s not without it drawbacks.
Simulation time is slow even for linear elasticity
deformation. For non linear deformation, it is even slower.
To permit real time performance, multiple accelerating
strategies should be implemented. For medical application,
some real time accelerating strategies are not applicable
due to limited allowable deformations and inaccuracy
introduced. Finite element system 1s very complex and it
1s not that easy to implement.

Mass spring method: Mass spring method is one of the
physical based methods that have been extensively used
1n the field of real time deformable object modeling. The
surface or volume is discretize into a set of mass points.
Each mass pomt 1s linked to its neighbors by one
dimensional spring. Deformation 1s computed by finding
equilibrium state between interconmected points after
external force is applied. The spring is often linear, but
non-linear elasticity can be simulated by applying
multi-varied stiffness springs. Mass spring systems can
also modeled as either static or dynamic (where time has
influence) system.

There are multiple ways to construct the mass spring
lattices. One can construct the springs manually or
discretize the object into sets of tetrahedrons!™or
cubes. Acquired geometry topology (tetrahedrons or
cubes) are represented as configuration of point masses
comnected by springs.

Basically, as spring experience external forces,

the spring is either compress or extends to the
direction of the force and creates a repulsive
force oppose to the direction of the force.

The created force 1s described mathematically by
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F=-k*Ax

AX=x, - X

where F is the resultant force, k is the spring coefficient,
and the distance between the two pomnts (x, = current
distanceAx and x, = distance at the mertial position).
Tnertial position is the distance between two separated
points. No force will be generated if the points are not
displaced. If the spring 1s compressed, then will be
negative, generating a positive force (expansion). If the
spring is expanded, then will be positive, generating a
negative force (compression). Elasticity coefficient is
represented by k. Also known as Young’s modulus, one
dimensional deformation coefficient weights the spring
final force. Stiffer spring have bigger k as it creates a
larger force from its inertial state. Conversely, a spring
with a smaller k 1s more flexible because it creates a smaller
force from its mertial state.

To compute the distance between two points, one an
use Pythagoras” theorem. Then, multiply with k coefficient
and finally use the mverse of this value to compute the
force. Spring force alone does not enough for most
simulation. Other forces can be applied into the system
such as damping force. This is to simulate the energy loss
experience by the springs. This results into an extended
equation

F=-lx-bv

where b 1s the coefficient of damping and v 15 the
relative velocity between the two comnected points.

For a networked configuration of mass spring lattices,
when a spring 1s displaced, the resultant force propagates
throughout the entire network. This results mto
deformable object behaviors. Based on this phenomena,

Fig. 11: An example of mass spring model. Commected
spring exerted forces on neighboring points,
displacing the points from its rest position™”
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mass spring are used in modeling string, cloth, jelly,
face, human tissue and various other. The difference
between these applications 1s the imitial spring
configurations.

In a dynamic three dimensional deformable system,
where time is integrated into the system, the mass m, at
position x, € R’at time t are governed by Newton’s second
law of motion

m (0 + 1K (0+ 670 =7 (1)

where y denotes a damping factor, £™(t) refers to the
internal forces resulting from spring interconnection and
£7(t) represents the sum of external forces applied by the
user or due to gravity or collision The equations of
motion for the entire system result from assembling the
equations of all masses m; in the lattice. Writing the
positions of all m masses component-wise into a position
vector x of size 3n, we can state a matrix equation for the
entire mass-spring system as

ME+Dx+Kx=-f

where M, D and K are 3n 3n matrices representing mass,
damping and stiffness, respectively. Although possibly
large, these matrices are very sparse. M and D are
diagonal, where K in a regular lattice 15 banded according
to adjacency between masses. The equation is reduced in
to two coupled systems of first order differential
equations to numerically integrated through time as

X=V
v=M(-Dv-Kx-1)

The problem of solving large and complex networked
configuration of mass spring lattices calls for numerical
integrators. There are lots of numerical integrator
techniques available, but 4 most popular integrators are
Euler, Midpomnt, Runge-Kutta and Verlet. These
integrators vary in its accuracy and computational cost.
The fastest one but with less accurate are Euler integrator
and the most accurate integrator but slow to compute 1s
Runge-Kutta. Verlet mtegrator, on the other hand, 1s both
fast and accurate integrator compared to other integrators.
Accuracy is important to maintain simulation robustness.
Although, all mtegrators accumulate errors at each
time-step, the highest accuracy integrators will maintain
the simulation stable for a longer time. Inaccuracy also
leads to instability, where the simulation will explode and
turn to chaos.
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Chadwick et al., coupled multi layered mass spring
system with free form deformation for its computer
animation system™. The method allows for global and
local deformation of articulated character. Teschner et af.,
approximate the object’s shape into uniform tetrahedral
meshes of free form deformation constraint™?. Physical
based deformation is applied to the tetrahedral meshes
using mass spring techniques where the mass spring
system will deform the free form deformation control
pomts. Deformed free form deformation control points will
then deform the underlying vertices. To preserve volume
undergoing deformation, volume and surface preserving
coefficient is introduced to the mass spring system. This
two fold deformation method which coupled mass spring
system and free form deformation allows for high
geometry deformation as the rendering geometry and
deformation geometry are independent of each other.
Other hybrid method of mass spring systems is by
Christensen et al.,' where the deformable cbject is
approximately wrapped with simple mass spring lattice
configuration. Then physical based deformation is applied
to the mass spring where the lattice configuration will act
as free form deformation constraint to the actual object
geometry. This method 1s used for ammating characters in
3d animation. Cotin et al. combined finite element method
and mass spring system for virtual surgery application™.
Finite element method is used to model tissue deformation
using pre-computed deformations allowing large
deformation. To enable volume cutting and topological
changes to the tissue, a mass spring model variant called
tensor mass model is applied into the system.

Baraff et al mtroduced mnplicit mtegration for its
mass spring cloth simulations!. By using implicit
integration, the system i3 much more stable and
independent from number of particles used. Fuhrmann et
al. describe and algorithm which replaces the nternal
cloth forces by several constraints and therefore can
easily take large time steps”. Instability, inaccuracy and
speed problem for numerical integration can be minimized
by using Verlet mtegrator. Jacobsen uses velocity less
Verlet integration for its real time physic systems®™
Teschner et al. have perform a little experiment on various
integrators to find the fastest integrator and have proved
that Verlet integrator is the best numerical mtegrator
suitable for mass-spring systems period'?.

Mass spring systems are easier to implement than
finite element method. Computation cost for mass spring
systems are much lower compared to fimte element
method thus mass spring systems have much wider
appeal for real time applications. Non linear deformable
object can also be modeled by mass spring systems. In
addition, mass spring systems are suitable for parallel
processing allowing a scalable simulation platform.
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Since mass spring systems rely on numerical
integrators, the systems are vulnerable to convergence
and instability. The principle of mass spring systems
defined that force travels according to the spring’s links,
not by continuum. This physical approximation is too
coarse to be applicable for some critical applications.
Certain applications requirement such as specific
constraint and materials properties cannot be modeled
with mass spring systems. Behavior of incompressible
materials and thin object are unpredictable if modeled
using mass spring systems. It is hard to model material
stiffness by setting spring coefficient parameter.
Sometime the deformation acts differently than desired
behavior. Even after successfully tuning the spring
coefficient, other coefficient, for example gravity,
when changed, the spring coefficient have to be
tuned all over again.

Gas pressure method: Matyka and Ollila proposed a
novel technique for modeling elastic soft body chject!®],
Soft body is described as three dimensional deformable
meshes which always keep constant volume. The method
is based on simple thermodynamics laws and uses the
Lauswus-Clapeyron  state equation for pressure
calculation. The pressure force is accumulated into a force
accumulator of a 3d mesh object by using mass spring
technique. Behavior of soft body is obtained after the
integration of Newton's second law of motion with fixed
or non-fixed air pressure inside of it. Simply put, the idea
15 to create a closed mass spring cloth represented as
manifold mesh object and put air pressure inside it.

To enable simple pressure formulation, Matyka uses
ideal gas approximation which is defined as one in which
all collisions between atoms or molecules are perfectly
elastic and in which there are no intermolecular attractive
forces. One can visualize it as a collection of perfectly
hard spheres which collide but which otherwise do not

Fig. 12: Example of gaseous pressure method for simple
two dimensional meshes. The mesh must be
mamnifold, represented as wrapped cloth which
will have ideal gas pressure inside'®
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interact with each other. In such a gas, all the internal
energy is in the form of kinetic energy and any
change in internal energy is accompanied by a
change in temperature.

An ideal gas can be characterized by three state
variables: absolute pressure P, volume V, and absolute
temperature T. The relationship between them may be
deduced from kinefic theory and represented by

p= nRT
v

where n iz the number of moles and R iz universal gas
constant . To calculate pressure for the point of the
shape, the expression used is

Next, the volume of the deformed body has to be
recalculated to measure the gas pressure inside the object.
Matyka uses simple bounding geometry such as sphere,
box and ellipses to approximate the current volume. A
better volume computation method is prezented by Owen
using Gauss’s Theorem. Gauss’s Theorem relates the
divergsence of a vector field within a volume to the flux of
a vector field through a closed surface by the following
where the surface s encloses the volume v. Detail theory
and implementation are available at™

Deformation based on ideal gas pressure method
does proved to be fast{able to perform real fime
deformation with coupled thousand of vertices)™. The
method iz simple to implement and requires no extensive
geomeiry discretization preprocessing (unlike finite
element method). Since its volume dynamic is represented
as simple ideal gas equation, it does not exhibit complex
internal volume structure like volumetric mass spring
method and finite element method to compute internal
dynamics. Finite element method and volumetric mass
gpring stored invizible internal geometry topology data
for dynamics processing while gas pressure method only
store visible surface geometry topology data which means
lezss memory footprint.

Albeit all gas pressure method sirengths, it’s not
without weaknesses. It iz very hard to define the
deformation coefficient {Young’s modulus and pressure
coefficient) to model desired material. Deformation
behavior looks like a balloon filled with water placed
underwater. From the available demo, it doesn’t look like
a balloon filled with gas at all. Since it uses mass spring
technique which consist of numerical integration, gas
pressure method inherit mass spring drawback which
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Fig. 13: Screen shot of of gas pressure method for three
dimensional volumetric deformable objects®™,
The simulation is fast enough to be performed in
real fime

ig numerical integration accuracy and stability. The
deformation is prone to explode if it undergoes
huge deformations.

Mesh free method: Numerical methods like Finite
Elements, Finite Volumes and Finite Differences are
already very well developed However, there are
limitations to these methods. First of all the time an
engineer spends on solving a problem, goes mainly into
the meshing of his solution domain. Secondly, the mesh
iz sensitive to large deformations, which can cause
accuracy deterioration. To circumvent the meshing as a
whole and make the problem more flexible, the so-called
mesh free methods are invented.

To give some applications of this method, first the
differences between the mesh free methods and the other
methods should be clear. Instead of using a pre-defined
mesh, mesh free methods only use node generation
(giving the points without the need to prescribe the
relationship between the nodes) and for each node a
shape function iz created Since the mesh lesz method
does not describe point topology explicitly, neighbor
gearch iz fundamental in finding the equilibrium state of
the deformed object. The lack of topology structure and
the ability of the system to self organize provides a
system that iz able to simulate a wider range of deformable
material compared to commonly used deformation
technique. The next step iz to form a system of equations
and solve this system.
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Fig. 14: Rendering techniques for particle based surface;
axes, discs, wireframe ftriangularion and flat
shaded triangulation™
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Fig 15: Left, deforming. Center, deforming and surface
restructuring by adding new poinis. Right,
deforming and tearing.®?

Common geometric representations approximate the
body by a mesh of nodes of fixed topology which are not
adapted to the animation of substances undergoing large
inelastic deformations. In this case, the use of mesh less
method for object representation and dynamic
representation is more appropriate. These systems are
unstructured in the sense that interactions between point
masses do not depend on a specified graph of
connections, but on distance. The need to simulate
various complex deformation types such as melting,
golidifying, splitting and fusion motivated the use of mesh
lesz method in modeling deformable objects in the field of
computer graphics.

To derive Inter-point forces, Tonnesen used the
pair-wise Lennard-Jones potential energy functions as a
dynamics system solution?”. To enable stretching and
growing, Tonnesen introduced orientation to the point*s
propertiez. Under large deformation, Tonnesen proposed
a kd-tree hierarchical data structuring approach to
compute forces and torques at reduced number of points.
By spatially subdivide the object space within some
radiug (natural inter-pointz spacing), all to be deform
neighbor points can be efficiently found. To further
reduce the computation, thizs operation iz occaszionally
performed and cache list of neighbors were used for
intermediate time steps. New points were added when
neighboring points have large enough space between
them and still under maximum number of allowable points
between the ranges.

Each point is given state variables of position and
mass for the system to interact with the dynamics. For
more complex systems, additional state wvariables
combined with simple heuristics were formed fo create
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Fig. 16: Fusioning deformable objects®!

application specific behaviors. The surfaceis rendered as
izo surface which yield an implicit coating of the point
which handles topological changes such as splitting and
merging by construction.

The Lennard-Tones potential is well known in
molecular dynamics for modeling the interaction potential
between pairs of atoms. It creates long-range attractive
and short-range repulzsive forces, yielding particles
arranged into hexagonally ordered 2D layers in absence of
external forces. Increasing the dissociation energy
{magnitude of the potential energy) increases the stiffness
of the model, while the width of the potential energy can
be varied. Therefore, large dissociation energy and high
potential energy exponents yield rigid and brittle material,
while low dizzociation energy and small potential energy
exponents result in soft and elastic behavior of the object.
Thiz allows the modeling of a wide variety of physical
properties ranging from stiff to fluid-like behavior. By
coupling the dizssociation energy with thermal energy
such that the total system energy iz conserved, objects
can be melted and frozen. Furthermore, thermal expansion
and contraction can be szimulated by adapting the
equilibrium separation distance to the temperature.

Desbrun and Cani®*¥ ugse smoothed particle
hydrodynamics approach used by physicists for
cosmological fluid simulafion as its deformable dynamics
basiz. The Smoothed Particle Hydrodynamics (SPH)
formalism was introduced by physicists for accurate
gsimulation of fluid dvnamics. Simulating a fluid consists
in computing the variations of continuous functions such
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Fig. 17: Deformable object are splitted and then fused
together™

AR

Fig. 18: Target morph using point based methol"

as mass density, speed, pressure, or temperature over
space and time. Standard finite element techniques in
hydrodynamics use an Eulerian approach: they consist of
dividing space into a fixed grid of voxels, and then
studying what flows in or out of each voxel. However, this
kind of approach requires the divizion of huge empty
volumes and is not intuitive for flows.

SPH belongs to an alternative approach, called the
Lagrangian approach that consistz of following the
evolution of selected fluid elements over space and time.
The particles can be viewed either as matter elements or
sample points scattered in a soft substance. Each of them
represents a small volume of inelastic material that moves
over time. In practice, smoothed particles are used to
approximate the wvalues and derivatives of contimious
physical quantities, such as local mass density or
pressure that need to be computed during the simulation.
Smoothed particles ensure valid and stable simulation of
a state equation describing the physical behaviors of the
material. It i also used for deforming the surface of the
substance in a coherent way using the level zetz of the
mass density function. To reduce computation time,
adaptive time steps for integration iz used according to a
local stability criterion along with efficient data structure
for neighbor search. Desbrun further the research for
rendering the point particles using implicit surface
rendering method®,

Uzing mesh less method, dubbed point based
method; Keizer et al. were able to simulate wide range of
material properties such as stiff elastic to highly plastic
using a single application framew ork™. By using points
for both volume and surface representation, arbifrarily
large deviations from the original shape can be simul ated.
In conirast to previous mesh less based elasticity in
computer graphics, the physical model is derived from
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continuum mechanics, which allows the specification of
common material properties such as Young’s Modulus
and Poisson’s Ratio.

In each step, spatial derivatives of the discrete
displacement field were computer using a Moving Least
Squares (MLS) procedure. It is from these derivatives that
strains, stresses and elastic forces at each simulated
points were obtain. Equations of motion for these forces
were solved using both implicit and explicit integration.
Point sampled surface were rendered dynamically
adaptive for scalable and faster performance. Although
material anisotropy can be simulated, only linear elasticity
are implemented in the dynamic system. MLS only works
if there are at least 3 neighboring pointz within non-
degenerate locations. This makes it only suitable for
volumeiric objects, not two dimensional or one
dimensional object. The nature of the system is close
proximity points always interact with each other. This
makes it difficult to model fracture and brittle
materials. Even with stiff coefficient, hard edges are
difficult to achieve.

Deformable object ranging from stiff elastic to highly
inelastic objects can be modeled efficiently using mesh
less method due to its natural properties of not having
topological properties explicitly. Surfaces are easy to
shape, extend, fusion and split. Material properties such
as stretching, bending or variation in curvature can be
confrolled by adjusting strength of various potential
energy functions. Input model doesn’t have to be
dizcretize into elements which is a requirement for finite
element method.

Mesh free method application in computer graphics
deformable object simulation is quite new. The first idea
implementation was seen in 19959, With this method,
objectz are easy to deform and new deformed shape
are eagy to construct for the purpose of rendering
{(no topology needed). Material stiffness and other
properties such as resistance to stretching, bending can
be controlled by adjusting strength of various potential
energy functions.

One problem of mesh free method iz that the surface
iz not explicitly defined thus poses a problem rendering
the points. The points cannot be rendered uszing trivial
geometry rendering technique. It iz harder to achieve
exact control of the shape. Usually, sampled points are
shape approximation of the original object shape. Hard
edges are also hard to preserve during point sampling of
the object. Accurate dynamic computation is expensive.
To enable real time performance, implementation must
include heavy optimization. The lack of precise conirol
and shape degeneration due to point sampling makes it
unsuitable for engineering purpose.
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CONCLUSIONS

The mam strength in parametric representation based
surface deformation 1s it maintains object smoothness
under any deformation complexity. Users are given total
deformation control up to the control point complexity
level. Because of this features, parametric based surface
deformation are widely used m computer aided design and
model editing application.

Parametric based surface deformation is not without
1ts limitation. Since the object representations are defined
as sets of parametric surfaces, the deformation detail level
depends on the quantity of the control points. It is
impossible to apply localized deformation in between
control pomts. Remeshing the parametric surfaces
mtroduced aliasing that may not accurately reflect the
deformation the user intended to make because of
continuity of the constraints. Tt is difficult to represent
object parametrically especially for objects possessing
complicated topology. It 15 unpossible to deform
volumetric object while at the same time preserved its
volume as objects represented as parametric surfaces hold
no volume mformation whatsoever. Eventually, simple
deformation requires the adjustments of multiple control
points or reconstructing the control points altogether
which is very tedious.

Global deformation, FFD and EFFD provide higher
level control than deformation based on parametric
surfaces. While global deformation only provides limited
sets of deformations, FFD allow user to manipulate its
deformation constraint anyway they like. FFD is not
without its setbacks. The first two techmques are linited
in permitted deformations as the techniques constraints
the deformation with its static deformation constraint but
the latter provides a powerful tool as it gives the user the
ability to construct the deformation constraint.

Physically based deformable models have seen wide
application in many fields of computer graphics. The
ability to simulate real world various material behaviors
does prove to be useful in the field of medical and
engineering. Physical based model limits the direct user
controls of the deformation process. Deformations are
computed using approximations of physical dynamics.
Sometimes deformation behavior 1s unpredictable due to
gross approximation of dynamics. This can be seen when
tuning mass spring system spring stiffness for specific
materials. Unlike most non-physical based deformation
techmque, deformation parameters for physical based
technique are much more complicated to configure. With
limited computing power, computing complex dynamics is
very expensive. For finite element method, internal
geometry structures are required for dynamics
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computation. Gas pressure method on the other hand,
does not have this internal geometry structure for its
dynamics computation thus makmg it less memory
footprint requirements. Physical based method does not
appeal to some computer graphics application especially
in the field of object modeling and editing because of it
gives user hmited control of deformations.
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