Asian Jouran] of Information Technology 5 (2) : 118-125, 2006

© Medwell Online, 2006

Reuse-Based Software Development for Parallel Graphics on Hybrid Architectures

Ali M. Meligy,
Menoufya University, Egypt

Abstract: Performance of programs is often sensitive to the system architecture, the run-time environment and
input data characteristics. Therefore, writing portable programs for parallel and distributed systems can be very
difficult due to the wide variety of system architectures. To aid parallel program developers, some approaches
have been proposed that employ high-level models of parallel computation or different abstraction techniques,
such as communication libraries, macros, and abstract data types. A parallel template is a re-usable, application-
independent encapsulation of a commonly used parallel pattern. The MIMD-SIMD hybrid system malces use

of “Off-the-Shelf” hardware components. In this study we suggest a template-based methodology to parallel
software development on such systems. We use some modified parallel Bresenham’s algorithms to illustrate
our approach. We also extend some previous results concerning the parallel line-drawing algorithms. These
algorithms can be mmplemented as a re-usable code-skeleton for quick and reliable development of parallel
applications. We give a standard mterface which facilitates the composition of templates and provide a
systematic development model for the hierarchical development and the subsequent requirements of a vast

majority of parallel applications, which can be suitably solved on a hybrid system.

Key words:Hybrid architectures, parallel computer graphics, software reusability, systola 1024, MIMD-SIMD
systems, parallel beresenham’s algorithms

INTRODUCTION

To solve new problems, software developers can
rapidly construct applications by assembling reusable
components. This increases productivity by avoiding
development and improves the quality of software
systems by incorporating components whose reliability
has already been established Many research approaches
contribute
development. These include creation of new reuse

to advances in reuse-based software

framewaorks, architectures, tools and
enviromments as well as formulation of new reuse 1deas
and concepts'!. On the other hand, the development of
truly reusable parallel libraries 1s difficult because of
additional complexities associated with concurrency and
data distribution. An unfortunate consequence of
concurrency is that two processes or functions that
execute correctly in isolation may not execute correctly
when composed, because of race conditions. Data-
distribution issues can lead to both correctness and
performance problems. If a function expects data to be

distributed in one fashion and receives it in another, then

Processes,

either the function will execute mcorrectly (in the worst
case) or an expersive redistribution operation may be
required”.

The growth in the usage of Internet forces us to
re-evaluate CBR. Today it 1s possible to produce a

reusable component that runs in any kind of platform. It
1s also possible to download these reusable components
from Internet and assemble them. It can be expected that
0 a very near future many academic, governmental and
organizations be marketing the
components that they produced on Internet. Therefore,
Internet with the components containing analysis models,
design patterns,
component repository of any organization. Such an
environment with thousands of component servers

commercial will

documentations etc. will become the

requires reuse support tools which can handle the
dynamic changes m the components or component
servers. Therefore, Software reuse can be addressed at
three levels™

The techmques for developing lugh-quality software
components.

An organization that has the
producing, consuming and managing
reusable components.

Performance evaluation tools in such an organization.

resources for
shared

The application of a program-generation approach to
enable the reuse of software in an area of scientific
computing has been described™. The authors describe the
design of a program generator for the specification of
subroutines that can be generic in the dimensions of

Corresponding Author: Ali M. Meligy, Menoufya University, Egypt

118

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

arrays, parameter lists and called subroutines. They
describe the application of that approach to a real-
world problem in scientific computing, which requires the
generic description of inverse ocean modeling tools. In
addition to a compiler that can transform generic
specifications into efficient Fortran code for models, they
have also developed a type system that can identify
possible errors already in the specifications. This type
system 18 mmportant for the acceptance of the program
generator among scientists because it prevents a large
class of errors in the generated code.

The development of efficient parallel programs
requires deep knowledge of parallel algorithms and
expertise in the application domain. In™ a methed has
been presented to make such expertise available in an
domain specific tool set. Tts construction is based on
extensive use of a variety of powerful reuse methods. Tt
automates a large amount of the software construction
process, such that users need not know about parallelism.

The term “Template™ has recently gained attention in
the parallel processing community, yet 1s an evolving
concept with several definitions. The primary motivation
for comstructing templates 13 to rapidly infuse
common usage state-of-the-art algorithms in a form which
can be adapted to specific application requirements. This
implies that the template retains the desired properties
but is cast in a form which is independent of parallel
architecture, data layout and programming language.
Templates go beyond pseudo-code to become objects
which are directly compilable on multiple architectures.

The complexity of building parallel applications 1s the
maximum at the lowest level of abstraction e.g. at the
socket level which is closest to the hardware architecture.
The complexity decreases with higher levels of software
abstraction. The levels of abstraction move the user

mto

farther from the architectural details. The cost 1s some
performance overhead. A majority of the approaches,
proposed to aid parallel program developers, employ a
high level model of parallel computation, thus hiding
details of low-level parallelism related 1ssues, such as:
hardware architectures, interconnection topologies,
process creation and binding communication and
synchronization, ete. Different models employ different
abstraction techmques, such as communication libraries,
macros, new parallel languages and abstract data types.
Depending on the degree to which the programmer
specifies the parallel interactions, these models can
broadly be categorized as:
+ Explicit: Message Passing Library (MPL) packages
like PVM™ and MPI¥ and various Remote Procedure
Call (RPC) packages fall into the explicit category.

119

Implicit: Techniques like parallelizing compilers!™
fall mto the implicit category. Many functional and
logic programming languages also explore implicit
parallelism which 1s naturally present in these
languages.

Semi-explicit: Here the user handles part of the
parallelism-related issues. For instance: object-
ortented programming models based on active
objects and various template-based.

Template-based approach for parallel programming is
based on the use of frequently occwrring patterns for
parallelism. Various terminologies have been used in the
literature to express siumilar ideas, but 1 different contexts.
For example, the term design pattern is used in'"” for
representing frequently occurring patterns in the context
of object-oriented design methodology. The same
terminology has been used in the context of parallel and
distributed computing to imply commonly occurring
parallel or distributed computing abstractions™".

The parallel template used here is different from a C++
template. A template-based approach has the same
intention as the other approaches to parallel programming,
1.e. to facilitate the development of a parallel application.
In addition, it emphasizes the following issues: (a) re-
usability of the frequently occurring structures for
parallelism and of the existing sequential code; (b)
usability through the study and documentation of the
frequently occurring patterns for parallelism, thus
avolding re-learming solution strategies; and (c) the
possibility of writing correct programs with lesser effort
by luding most of the tedious and error-prone, low-level
parallelism related details from the user.

In'" a programming paradigm parallel
computing is defined as a class of algorithms that solve
different problems but have the same control structure.
The term Archetype is used 'Y to denote a program
design strategy for a class of parallel algorithms along
with the associated program design and example
implementations. Emphasis here 1s on enhancing a
developer's understanding of common classes of parallel
problems using documentation and exemplar
implementations.

Some characteristics of a template-based model are:
Separation of specification, hierarchical resclution of
parallelism, mutually independent templates, extendible
repertoire of templates, large collection of useful
templates, open system concept, cormrectness, use of an
existing programming language rather than language
extension or a new language which will enhance re-
usability of existing sequential code and also reduce
learning and development times, performance, support
tools, portability, flexibility, and usability™.

for

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

In the field of computer graphics, images are
produced using primitive graphic objects such as points,
straight lmes and circles. Computers with a single
processor may take several hours to generate complex
images. This is not acceptable, especially for representing
dynamic phenomena. Higher performance can be achieved
by usmg multiprocessor machines that provide for
concurrent execution of programs. In general, the line
segment is the basic entity in all computer graphics
systems. Straight-line segments exist in block diagrams,
bar graphs, drafts for civil and mechamcal engineering,
architectural plans and logic diagrams. Curves can be
approximated using a series of small line segments. In
graphic interactive applications, the problem is how to
obtamn pixels that provide the best approximation to a line
1n a shorter tume.

Flynn classifies parallel machines in terms of the
number of distinct instructions issued at a time and the
number of data elements they operate on The
conventional Von Neumann sequential computer 15 a
SISD (single-instruction single-data). Parallel machines are
classified as MIMD, SIMD and MISDM. Tn*! a new
parallel system 1s described, that combines both SIMD
and MIMD architectures. This hybrid system consists of
cluster of workstations and STMD systems working
concurrently to produce an optimal parallel computation.
Massively parallel SIMD machines such as Distributed
Array Processor (DAP), Connection Machine(CM-2) offer
a high degree of parallelism to tackle computation
intensive problems. Tmage processing has benefited from
this architecture. Other computational tasks that produce
voluminous amounts of data are better understood with
the aid of scientific visualization techniques. Tt is an
important tool to use a steering mechanism to control the
course of a computation or simulation that needs some
sinple form of dynamic user interaction.

A parallel VL ST architecture for fast line drawing has
been presented in"¥. The architecture implements a non-
mcremental line drawing algorithm, which allows writing
simultaneously in a memory array all the pixels that
approximate the straight segments. The bottom-up
process for a simplified architecture design that reduces
the circuitry redundancies in order to mimmize the area,
has been explained. This memory architecture also
provides read/write random accesses and raster outputs
that permit the memory architecture to display the data
serially. A 256x256 eight- bit pixel processor array has
been designed using 0.35mm standard cells. Test and
simulation results have demonstrated that a rate of 50M
segments per second can be achieved, independently of
their length and orientation. An attempt to provide an
improvement in line drawing speed, has been proposed.

120

This is done by accelerating the process of obtaining the
pixels to be drawn and to shorten the display memory
write time!"™,

A parallel algorithm is proposed which does not use
the classical incremental techniques that obtain the
present pixel coordinates from the previous ones. In this
case, the computation to determine if a certamn pixel
belongs to a segment consists of a single comparison at
every pixel between previous common computed values
for each row and column of the screen. The maximum
efficiency 1s obtained when placing one processor by
pixel in which case the pixels that approximate the straight
segment are obtained simultaneously.

The obtained parallel algorithm
implementation of a parallel architecture consisting m a
matrix (Mx*N) of very simple pixel processors and N+M
column and row calculation units. This architecture
allows writing simultaneously in just one clock cycle all
the pixels that approximate a given straight segment.
Thus, the writing speed 1s only limited by propagation
time of the technology used in the implementation.

Applying sequential line-drawing algorithms on
parallel machines can lead to very inefficient codes.
Ellsworth™ describes an algorithm suited for interactive
polygon rendering, where the model's image on screen
has frame-to-frame coherence. He uses an optimized
MIMD with all-to-all commumnications, where all
processors communicate with all other processors!™.
suggests an improved parallel circle algorithm that uses
equal x-step divisicns. In®” an incremental parallel line-
and circle-drawing algorithim based on Bresenham's
algorithm'"! has been presented. The algorithm uses only
integer values and avoids any multiplication.

Some parallel machines possess the ability to
support virtual processors. When the number of physical
processors 1s not enough to cover the amount of
parallelism in the problem, virtual processors give the
illusion of a larger machine. This mechanism greatly
reduces the amount of programming and increases the
flexibility of the code for problems of different sizes. The
ratio of virtual processors to physical processors is
known as the VP ratio. When the VP ratio exceeds unity,
the local memory in each physical processor 1s divided
among the virtual processors assigned to that physical
processor. Executing proceeds in parallel, but is time
sliced among the virtual processors. Thus, when the VP

ratio 18 1, the program will generally take n tines as long
14]

allows an

to execute!

In section 2 we discuss briefly the main approaches
used for designing reusable parallel software. Section 3
outlines some parallel computer graphics algorithms.
Included here are our previously obtained results™.

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

.Section 4 is concerned with the construction of reusable
parallel graphics software. We give a template example for
SIMD-MIMD hybrid systems with 4 PCs.

REUSABLE PARALLEL SOFTWARE

Without the ability to reuse existing algorithms and
software, every programming project must start from
scratch. Effective reuse technologies allow algorithms
and techniques to be encapsulated in a reusable fashion
as design patterns, functions, libraries, components, or
objects.

Parallel software developers should identify classes
of problems suitable for parallel implementation and
develop efficient algorithms for each of these areas. With
such a wide variety of computer systems and
architectures in use or proposed, the challenge for people
designing algorithms is to develop algorithms and
ultimately software, that are both efficient and portable.
To address this challenge, there are three, not mutually
exclusive, approaches. The first approach is to express the
algorithms in terms of modules at a high level of
granularity. When moving software from one architecture
to another, the basic algorithms are the same, but the
modules are changed to suit the new architectures. A
second approach is to create a model of computation
representing the computing environment. Software 1s
written for this model and then transformed to suit a
particular realization of an architecture that fits the model.
The general categories of MIMD and STMD are of course
too crude, but additional details could be specified. For
example, an MIMD model might be characterized by the
number of processors, communication vehicle, access to
shared memory and synchronization primitives. Software
written for such a model can be transformed to software
for a specific machine by a macro processor or a specially
designed preprocessor. As a third approach, the software
can be written in high-level language constructs, such as
array-processing statements. Again, a preprocessor can
be written to generate the object code sutable for a
particular architecture.

Of the three approaches, it is preferable to express the
algorithms m terms of modules with a high level of
granularity. In particular, it would seem applicable to
certain basic software library subroutines that are ex-
pected to shoulder the bulk of the worl in a wide variety
of calculations. Where successful, the effect of this will
enhance both the maintenance and use of the software.
Software maintenance would be enhanced because more
of the basic mathematical structure would be retained
within the formulation of the algorithm. Software users
may move existing codes to new environments and

121

experience a reasonable level of efficiency with minimal
effort. For this approach to succeed, a level of granulanty
must be identified that will permit efficient
implementations across a wide variety of arclitectural
settings. Individual modules can then be dealt with
separately, retargeting them for efficiency on quite
different architectures. This conceal the peculiarities of a
machie from the user and will allow him to concentrate
his effort on his application. This aims to exploit the key
features of the architecture. This 1s where the approach
based upon a model of computation can be useful.
Research efforts should focus on generic multiprocessor
algorithms that can be easily transported across various
implementations of these designs. If a code has been
written m terms of ligh-level synchronization and data-
management primitives, which are expected to be
supported by every member of the model of computation,
then these primitives only need to be customized to a
particular realization. A very high level of transportability
may be achieved through automating the transformation
of these primitives. Software maintenance benefits from
the 1solation of synchronization and data-management
peculiarities.

The concept of a design pattern such as “divide and
congquer’ in sequential programming has emerged as an
approach to cataloging and commumcating basic
programming techniques. A specification of this pattern
might specify the problem-independent structure and note
where problem-specific logic must be supplied. This
specification does not provide any executable code but
provides a basic structure that can guide a programmer in
developing an implementation

Software developers use Component-Base Reuse
(CBR). Fig. 1 shows a high-level model of a component
interaction with its enviromment!™,

In parallel processing, the aim is to construct an
algorithm template which is portable, scalable and
adaptable to application requirements, yet retains the
properties which make the algorithm desirable in the first
place.

In practice there are a small number of basic
parallel algorithm techniques. For example, the
manager/worker structure is often appropriate when a
large number of mdependent tasks need to be executed.
A single manager process generates tasks and allocates
those tasks to a number of worker processes each worker
repeatedly requests tasks from the manager and executes
the problem-specific code required to perform those tasks
(returning results to the manager) until the manager
signals that no tasks remain Variants of this basic pattern
may create a hierarchy of managers, in order to avoid a
bottleneck at the central manager and/or allow for
constant input data to be cached within workers, hence
avoiding redundant communication.

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

Other Components j——— ol Application Internals
f Interface
Middl > Platform

I

| Platform (operating system, communication system, subsystem, hardware) |

Fig. 1: The component model

Other common patterns include the butterfly, used,
for example, to perform parallel summations m time
proportional to the log of the number of processors and
domain decomposition, which is of course fundamental to
the data-parallel programming model. A template can be
thought of as a reusable algorithm that includes the
algonithm itself, along with information about how 1t is to
be used, where specific computational specialization can
occur and how the algorithm can be tuned. A template
may also include some sample implementations in

different languages and pomters to background
information™.
MPI's communicators mechanism allows the

programmer to encapsulate commumications that are
mnternal to a function, hence avoiding race conditions that

might occur if communications intended for one function

are intercepted by another. This mechanism makes it
easler to construct components so that mteractions occur
orly via well-defined mterfaces.
Each component has a name, model parameters, that may
have the form:

type:: cname

The body of the component consists of an interface
and a list of statements that define its function. Tmproved
software engineering techniques allow data distribution
1ssues to be separated from other aspects of function
logic. What are sometimes called data-structure-neutral
libraries allow an application to invoke an operation on a
parallel data structure without regard to how the data
structure 1s distributed; the distribution should impact
performance but not correctness.

The increasing availability of advanced-architecture
computers is having a significant effect on algorithm
research and software development

Furthermore, many problems cannot be solved with
existing "blackbox" software packages in a reasonable
time or space. This means that more special-purpose
methods must be used for the problem. There are a large
number of tuming options available and for many

122

problems it is a challenge to get any acceptable answer at
all or to have confidence in what is computed. The
expertise regarding which options are likely to work in a
specific application area 1s distributed among many
experts.

Thus, there is a need for tools to help users pick the
best algorithm and implementation for their problems, as
well as expert advice on how to tune them. This leads to
algorithm templates, with a decision tree to help choose
among them. The decision tree uses information about the
structure of the problem, the kind of selution that is
desired and the kind of computer available to identify one
or more suitable algorithm templates.

The developers of algorithms have the need to get
wwolved in the software development
Robustness, ease of use and portability are standard fare
inany discussion of algorithm design and implementation.
As architectures evolve, they will enclose
concurrent processing, shared memory, pipelining, in
order to increase performance. The portability issue 1s
important because of the variety of architectural designs
become reality. In fact, it is very tempting to assume that
an unavoldable byproduct of portability must be an
unacceptable degradation mn the level of efficiency on a
given variety of machine architecture.

Architectures of future machines promise to offer a
profusion of computing environments. The existing

Process.

new

forerummers have already given many software developers
cause to reexamine the underlying algorithms for
efficiency's sake. However, it seems to be an unnecessary
waste of effort to recast these algorithms with only one
computer 1 mind, regardless of how fast that one may be.
The efficiency of an algorithm should not be discussed in
terms of its realization as a computer program. Even within
a single architecture class, the features of one system may
improve the performance of a given program, while
features of another system may have just the opposite
effect.

PARALLEL GRAPHICS SOFTWARE

Assume that the line segment goes between the
integer points (x,,y;) and (x,,y,) and that the slope

satisfies 0 < m < 1. The line can be represented as
y=mx+Db, (1)
where
m = Yz7Y1’ b =y, - mx.
X7 Xa

For any given x-interval Ax we can compute the
corresponding y-interval Ay =m. Ax.
Eq. 1 includes a floating-point multiplication.

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

P
.

® O

P R

Fig. 2: The pixel grid for the Bresenham’s algorithm

To avoid this operation we can use the Digital
Differential Analyzer algorithm (DDA). Beginning with
the left end of the line segment and considering Ax = 1, we
can compute the successive vy values as

Y = YeTm 2)
A pseudocode for the DDA algorithm is:

Algorithm 3.1 DDA Line Drawing
#define round(a) ((int)(a+0.5))
for (int ix = x1 ; ix <= x2, ix++)
{
y=y+tm;
write_pixel (x, round(y), line color);

}

The DDA algorithm eliminates the floating-point
multiplication mn (1) and therefore it 15 faster in calculating
the pixel positions. The DDA algorithm requires a
floating-point addition for each pixel. The following
Bresenham’s algorithm avoids all floating-point
calculations and has become the standard algorithm used
in hardware and software rasterizers™*?. To illustrate
Bresenham’s algorithm we adopt an approach given m!™
. We start from the left endpoint (x,,y,) and step to each
successive pixel. At (x.y) we want to choose the next
pixel. The condition 0 < m <1 allows only the two
choices

(xt Ly and (x+1,y+1)

In Fig. 2 let P = (x,y,) be the previously selected
pixel, R and S are the two pixels from which to choose at
the next step. Let Q be the intersection point of the line to
be drawn with the lne x = x, + 1 and M be the midpomt
between R and S. Tf M lies above the line, pixel R is closer
to this line, otherwise pomnt S 1s closer. The error of this
test is < 0.5. Now we need to calculate on which side the
midpoint M lies. We write the equation of the line in the
forms

Table 1: Tncrements for some slopes

X Increment Increment Increment
fors=10.25 fors =075 fors=1.00
1 1 1 1
2 0 1 1
3 0 1 1
4 0 0 1
5 1 1 1
3] 0 1 1
7 0 1 1
8 0 0 1
9 1 1 1
10 0 1 1
11 0 1 1
12 0 0 1

Flx,y)=ax +by +¢c=0
and
v = (dy/dx)x + B, where
B 15 the y increment, dy = y, —y, and dx = x, — x,.
Comparing the two forms we get
a =dy,b=-dx, ¢ =B.dx.
Let
d=Fe,+1.y,+w=a(x,+1)+b(y,+%) +o
If d > 0 (i.e. M lies below the line) then we choose
pixel 8, otherwise we choose pixel R.

For the next grid line, if R i1s chosenn M 1s
incremented by one step in the x direction. The new value
of dis

d=Fx,+2,y,+%)=a(x,+2)+b(y,+'42) +c
It follows that A; = d, —d=a=dy.

Similarly, if S is chosen, M is incremented by one step in
both directions. The new value of d is
d=F,+2,y,+32=a(x,+2)+b(y,+32) +oc
It follows that
Ay=d —d=a+b=dy —dx.
For the start point (x,, ¥,) it is easy to show that
A= atb2

Table 1 shows the increment value for lines with
slopes s =0.25, s =0.75 and s = 1.00™

REUSABLE PARALLEL GRAPHICS SOFTWARE

Following™ we give an example for a parallel graphics
template that will mclude:

» A high-level description of an algorithm as in
section3.

* A description of when it 13 effective, mcluding
conditions on the input and estimates of the tiume,
space, or other resources required Here, it must be
clear, that the scanning goes from left to right. The
number of input tables 1s proportional to the screen
resolution.

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

Table 2: Pixel-table for the line with slope 0.25

X hi

60 60
61 61
62 61
63 61
64 61
65 62
66 62
67 62
68 62
200 95

As an extension to our algorithm,”we can generate
a pixel table for the required line. As an example, the pixel
table for the line with slope 0.25 between the points
(60,60) and (200, 95) 1s:

We can assign to each processor a column of pixels.
The processor the searches the pixel table for a pixel that
lies on this column and sets it.

¢ A description of when it is effective, including
conditions on the input and estimates of the time,
space, or other resources required. Here, it must be
clear, that the scamming goes from left to night. The
number of input tables is proportional to the screen
resolution.

* Pomters to complete or partial implementations,
pethaps 1n several languages or for several
architectures (such as different parallel architectures)

e A way to assess the accuracy

* Examples, on a common set of examples, illustrating
both easy cases and difficult cases

+ Troubleshooting advice

¢+ Pointers to texts or jounal articles for further
information.

The template skeleton may have the form:
#The User Interface
#Fill inthe attributes.
Example
picked up by default, although the user can specify
them if he wants to. For
int NumberOfPCe = 4;
mt SystolaNumberOfProcessors = 1024;
The Communication mode
#HExample
void broadcast row (int n; selector s)

{
Code to set CS,c; 8

b

or alternatively
void rnngshift row (it n; int k; selector s)

{
n=1;
while (n <=k)
{
Codetoset CE, C, s
Codetoset CW, C, s
n++,
}
i
Internals
to set a pixel
void Par_Set Pixel (array *A; int startx; int starty)
{

mt x = startx;

mt y = starty;

forinti=1;1<=4; i++)
{

Number of processors = 1024
for (int 7 =1; j<=1024; j++)
{
set pixel (x, y + A[i+j]);
X4+

}

CONCLUSIONS

Representing generic parallel templates as re-usable
components for parallel algorithms aims at providing
application-independent Library of templates that
facilitates extendibility of software systems and uses
generic interfaces. We have presented a set of templates
which can provide high granularity parallel applications
on a MIMD-SIMD hybrid environment. The goal is to
support templates for a cluster where some of the nodes
in the cluster can have different number of PCs To
achieve this, templates for shared-memory based
algorithms and the necessary refinements in the model in
these templates, need to be mvestigated. In the field of
parallel line-drawing algorithms, we have extended our
previous results to generate a pixel-table for each line. The
template and protocol umplementations and the user's
interface of the development system is being refined to
improve performance and the usability of the system.

REFERENCES
1. Selby, RW., 2005, Enabling reuse-based software

development of large-scale systems. IEEE
Transactions on Software Engineering, 31: 495-510.

124

10.

11.

12.

Asian J. Inform. Tech., 5 (2) : 118-125, 2006

Dongarra, 1. et al, 2003. Sourcebook of parallel
computing, Elsevier Science, USA.

Mili, H., A. Mili, S. Yacoub and E. Addy, 2002.
Reuse-based software engineering. John Wiley and
Sons, INC. New York, 2002.

Erwig, M. and Z. Fu, 2005. Software Reuse for
Scientific Computing Through Program Generation.
ACM Transactions on Software Engineering and
Methodology, pp: 14-2.

Eilinghoff, C. and U. Kastens, 1998. Reuse methods
for construction of parallel software. Tecture notes
m computer science. Proceedings of the 25th
conference on current trends in theory and practice
of informatics: Theory and Practice of Informatics.
pp: 56 - 67.

Geist, A. and V. Sunderam, 1992, Network-based
concurrent computing on the PVM system.
concurrency: Practice and Experience, 4: 293-311.
Gropp, W., E. Lusk and A. Skjellum, 1994. Using
MPI: Portable parallel programming with the
Message-Passing Interface. The MIT Press,
Cambridge, Massachusetts.

Bacon, D.F., 8.1. Graham and O.J. Sharp, 1993.
Compiler transformation for high-performance
computing. Technical report UCB/CSD-93-781,
University of California, Berkeley.

Singh, A., T Schaefer and D. Szafron, 1998.
Experience with parallel programming using code
templates. Concurrency: Practice and Experience.
Gamma, E., R. Helm, R. Johnson and I. Vlissides,
1994, Design patterns, elements of reusable object-
oriented software, Addison-Wesley.

Siu, 5. and A. Singh, 1997. Design patterns for
parallel computing using a network of processors.
In Sixth TEEE International Symposium on High
Performance Distributed Computing, pp: 293-304.
Hansen, P.B., 1995. Parallel programming paradigms,
Prentice Hall.

125

13.

15.

16.

17.

20.

21.

22.

23.

24.

Chandy, KM, 1994 Concwrrent Program
archetypes. In Intermnational Parallel Processing
Symposium.

El-Rewin, H. and M. Abd-El-Bar, 2005. Advanced
computer architecture and parallel processing, John
Wiley and Somns.

Sim, L.C., H. Schroder and G. Leedham, 2003. MIMD-
SIMD hybrid system- towards a new low cost parallel
system. Parallel Computing, 29: 21-36.

Marti, P.M., ABM. Velasco, 2000. Memory
architecture for parallel line drawing based on non
incremental algorithm proe. EuroMicro’pp: 12-66
Mares, AB. and J. Martinez, 2004. Aranda parallel
co-processor for ultra-fast line drawing PARA'04
State-of-the-Art, in Scientific Computing.

. Ellsworth, D., 1994. A new Algorithm for interactive

graphics on multiprocessors. TEEE Computer
Graphics and Applications, pp: 33-40.

Huang, T and E. Banissi, 1997. An Improved parallel
circle-drawing algorithm IEEE Computer Graphucs and
Applications, pp: 40-41.

Meligy, M. Aly and H.A. Nassar, 1997. A parallel
algorithm for computer graphics on systems with
shared memory ann. Conf. ISSR, 33:141-157.
Angel, E., 2003. Interactive computer graphics,
Addison Wesley, New York.

Alex, T., 1990. Pang line-drawing algorithm for
parallel machines. IEEE Computer Graphics and
Applications, pp: 54-59.

Schimmler, M., HW. Lang, 1996. The instruction
systolic array in image Processing applications. Tn:
Proceedings Europto 96, SPIE 2748, pp: 136-144.
Foley, I.D. et al., 1997. Computer graphics, Addison-
Wesley.

