Medweu Asian Journal of Information Technology 5 (12): 1464-1469, 2006

onllne © Medwell Journals, 2006

A Fast Testable Digital Fuzzy Logic Controller

Chemali, H., A. Khellaf, A. Benhamadouche and A. Ballouti
Department of Electronic University of Setif UFAS, Setif 19000, Algeria

Abstract: This study presents a hardware implementation of a two-input-one-output digital fuzzy logic
controller. A new functional testing technique, based on fuzzy testing rules, is developed A fuzzy logic
controller has been inplemented on FPGA using VHDL hardware description language. A testable versatile soft
core controller 13 designed with high degree of flexibility and portability and so numerous applications of this
controller are possible. FPGA reprogramming and reconfigurable facilities are the driving force behind getting
rapid hardware design improvements. High performance and fast controller responses are achieved by simple

parameter tuning and pipelined methods. The pipelined structure adds to the soft core design efficient means

for in-depth parameters controlling. As test 1s of prime interest, each part of this controller has been designed
to grow up its testability. FPGA’s Look-Up Table are used to prevent temporal fault occurring and to increase

controller decision speed. This design approach is carried out not only to improve fuzzy controller speed and

reliability but to get a well structured IP core.

Key words: Fuzzy controller, VHDL, test, scan, bist, signature

INTRODUCTION

In recent years, fuzzy systems have been
imnplemented usmg different architecture and support,
Fig. 1 dedicated VL.ST and microprocessor are widely used,
many applications require a high speed processing and
short time decision. In this work, we present an
implementation of fuzzy controller on FPGA XC4010using
high description language VHDL with new architecture
which satisfies fuzzy system requirements and testability
constraints.

The proposed architecture in Fig. 1 derives from the
generally fuzzy systems and consists of three blocks,
fuzzification block, rule base and mference engine block
and finally defuzzification block 4.

Functional description of our fuzzy controller is
obtained with VHDL,; this description can handle
multiple system mputs and outputs. The chosen
design is a two-input single-output fuzzy controller, where
a7 triangular membership function with a maximum of
2 overlaps and 4 active rules among 49 rules and centre of
area defuzzification method’s are the main elements
considered to build up the circuit in XC4000 FPGA Series
which are covered by powerful software i every aspect
of design from schematic or behavioural entry to
programming. Multiple reprogramming of FPGA helped
reconfiguration and thus hardware can be updated as
software. All these features make fuzzy systems design
easier to debug and modify rules or membership functions
of the processing description™.

Rule basc

Fuzzification » I p Defuzzification

Inference
engine

Fig 1: Fuzzy system architecture

To get benefits from FPGA solutions and get rid of
external memories, we used functional descriptions which
increase fuzzy controller performances n three points:

¢ Direct access to fuzzy membership Look-Up table
(LUT).

+ Simultaneous Rules activation.

¢ TImplementation of arithmetic functions.

The different modules of this fuzzy controller are first
described and implemented separately for a thorough
exploration, optimisationand then the complete system is
built relying on global performance and preserving the
main features leading to a reconfigurable TP core.

Architecture: The VHDL program of the fuzzy controller
is divided into three modules as shown in Fig. 2. A simple
assignment produce the different block interlinks. 6, 7, 8
bit inputs and outputs are tried to determine the different
issues which would be selected with respect to the
targeted tasks and the required precision.

Corresponding Author: Chemali, H., Department of Electronic, University of Setif UFAS, Setif 19000, Algeria
1464

Asian J. Inform. Tech., 5 (12): 1464-1469, 2006

x mix, mfyi
- Fuzzifier x, P » i
Rule base my—>yi
mfx,) ¥
B| Fuzifiers, P SumProd
I[: -
2 » Inference
¢ A 4
LT Pipelined division
b 4
== = | =P

Fig. 2: Fuzzy controller diagram

Fuzzification module: A fuzzification module for each
input is defined. Recall that fuzzification is transformation
of the crisp data into a corresponding fuzzy set, where
the input crisp data is converted and normalized as
shown in Fig. 3.

We have used a C++ program to get corresponding
fuzzy sets of each input crisp data with respect to the
appropriate universe of discourse of the FL.C.

All possible membership forms (triangular,
trapezoidal, Gaussian...) with 2 overlaps at most can be
usedand then discrete fuzzy sets are saved in LUT as
illustrated in Fig. 4.

When using 8 bit inputs, we can store fuzzification
data in 16x256 bits LUT.

The data is stored in 4 field format in the following
order:

F 3

ox N

X
Fig. 3: Normalized data
000 001 001 111
> Mf,x
BN i o
i —}LJ@X
e
111 000 110 111

Fig. 4 Fuzzification LUT

MIf1 (3bits), ex1(5bits), Mf2 (3bits) and ¢x2 (5bits)

Where Mf1, Mf2 are the membership functions and «
x 1, ¢ x 2 are their corresponding degrees.

We note that simple input assignments produce the
corresponding fuzzy sets of the normalized data and this
derives directly from VHDIL functional description
advantages.

Fuzzy rules and inference

Rule selection: The fuzzy rules represent the core of an
FLC and are expressed in linguistic format. We used a
Mamdani’s method to represent the inputs where the
implication of each rule is a singleton'™.

If x1 18 Mfl-x1 and x2 is Mf2-x2 then U is Mfy

The implication of each rule is stored in the 3 x 49
look Up Table which forms the command matrix of
the fuzzy system and in which the outputs singleton
are 3 bit-codes.

In this configuration, 4 rules are selected by
addressing LUT with the result of membership's
combination in pairs as shown in Fig. 5 and expressed as
follows:

LUT (Mfl-x1 & Mf2-x2).= 3bit-code singletons.

This task can be executed at once, so all active rule
selection should be performed simultanecusly.

Inference Engine: The minimum inference method is
applied to compute the antecedent membership degrees.
To implement this, we have used 4 blocks of Min as
showed in Fig. 6.

Mifl-xt ‘ o
MI1-x2 H ° Lok-T
' -P 4 active rules
‘ Table 3x49
M2zl -°
A (2)
Fig. 5. Active rules
al-x1 —pwl
al-x2 ——»"2
a2-x1. —pwyl
2-x2: —pwy2

Fig. 6: Minimum computing

1465

Asian J. Inform. Tech., 5 (12): 1464-1469, 2006

Proceeding as defined above has yield to obtain the
following advantages:

+ Multiple accesses to the matrix rules mplied a
reduction m rules reading time.

* Rule base replaced by coded singleton reduce FPGA
used area.

¢ The 4 active rules and their corresponding
membership degrees are extracted out at the same
rising clock edge.

This operation 1s carried out very fast so all active
rule selection and minimum computations are done
simultaneously at the same rising clock edge.

Defuzzification module: This module converts the
mference results into real values to control the process.
As known, controller performance in terms of speed and
area depends tightly on the defuzzification design ™.
Thus, appropriate algorithms should be selected for
this module.

We have used the centre of area defuzzfication
method’s COG as below:

V2 Y,
DLWy

Defuzzification module consists on three pipelined
functions: multiplication, addition and division. After
converting activated rules to a crisp data, we can then
get addition and multiplication using usual methods
as defined.

Tt is well known that addition and multiplication
actions do not severely limit controller performance,
however controller frequency depends firmly on the
applied division algonithm and generally consumes a great
part of controller area. To avoid performance degradation

wyl

yl Sum of Prod

wy2

¥2

wy3

y3

wyd

y4
wy2 Sum of min
wy3
wyd

Fig. 7: Multiplication and addition

yiw, (y)/12 bits,
) >
3w, (v12 bits)

|Y (5,4)
_l
> _l |Y(5..2)

Fig. 8: Pipelined division

and slowing down, we used binary shift division in
pipelined data path represent in Fig. 7.

Figure 8 illustrate an examplem of pipelined division
(6 bits input/out put), ahere division is divided into 3
successive separate steps: 2 bits then 2 bits then 2 bits.

So each step can treat a data pattern path in a same
time as the other steps do, providing a result for the next
step at the right tigme. This division takes 3 periods of
time.

We can get the division bit per bit or 3 bits per
3bits in several steps according to speed and area
limitations.

IMPLEMENTATION

Once detailed description of the different components
of our fuzzy controller is obtained, the processing
strategy is then defined.

The fuzzification and inference modules are set
firstand then a description of the pipelined structure of
defuzzification module is derived. This latter depends
closely on the number of input-output bits and the
selected division algorithm.

To improve fuzzy decision, we extended pipeline
mechanism to the global design.

As seen in the Fig. 9 the timing diagram is that of a 6
bit inputs/output fuzzy controller, each function is
executed in a single clock time starting at a rising edge.

After simulating and implementing each part of the
fuzzy controller, we note that fuzzification and rule-
inference modules could be processed at the same clock
period, then defuzzification is carried out in 2 steps: Sum
and Sum-of-prod in the first step, followed in the second
step by the division. In this way, fuzzy controller
response will take 35 clock periods instead of 6 periods.

RESULTS

Our Fuzzy controller has two inputs one output,
characterized by 7 triangular membership functions
with maximum of 2 overlaps and 4 active rules from
49 stored rules.

1466

Asian J. Inform. Tech., 5 (12): 1464-1469, 2006

Div 3 —4 (3 2 X1 X 0

Fig. 9: Timing diagram

After implementing all modules, in a Xilink VHDL
platform on XC4036XI., FPGA, for ¢ bits fuzzy logic
controller through pipelined and non- pipelined
architectures, we note that the speed 1s doubled for our
pipelined method in comparison to the other methods as
shown in Table 1.

The maximum frequency for this fuzzy controller in
KC4000 FPGA series is 18.416MHz. So it can treat inputs
each 54ns and make decision every 270ns with 18MFIPS
according to pipeline design.

Implementation of different mput/output FLC bat-
widths in different FPGA devices are shown in Table 2.
When varymg the number of bits per inputm it 1s
recommended to modify the pipelined division structure
1 order to boost up fuzzy controller performance.

As far as the quantity of FPGA’s CL.B (Configurable
Logic Blocks) used, an exponential growth resulted
despite of the significant improvement in FLC
defuzzification architecture.

Fuzzy controller response: Figure 10 illustrates an
example of 6 bits fuzzy controller response of VHDL
stimuli, this response was transformed with MATLAB to
get system surface control.

We can see in Fig. 11 that the surface 1s smooth with
6bit inputs, so there is no need to enlarge input widthand
thus controller can perform 18 Mega inferences per second
which is very important for Fuzzy FPGA Controller based
applications.

Tablel: Frequency details for 6 bits

Pipelined Non Pipelined
XC4036XL XC4036XL
Fuzzification 46.768MHz 46.768MHz
Rules/inferences 42.173MHz 42.173MHz
Defuzzification 19.035MHz 9.035 MHz
Fuzzy controller 18.416MHz 8.904MHz
Table 2:6/7/8 bits Fuzzy controller performance
Bits Frequency Area (CLBs) (%0) FPGAs
6 16.459MHz 69 XC4010XL
7 15.222MHz 78 XC4013XL
8 9.652MHz 99 XC4013XL

Fig. 10: Surface control of FPGA

Fig. 11: Fault injection in fuzzification

Fig. 12: Fault injection in defuzzification
CONTROLLER TEST

CLBs are the basic FPGA functional elements to
construct fuzzy controller designs. They are a suite of
sequential and combinational components structured in
matrix like form. Throughout designing our controller, we
tried to minimize sequential elements in the
implementation of FPGA by selecting VHDL mstructions
which use solely combinational logic and we configured

1467

Asian J. Inform. Tech., 5 (12): 1464-1469, 2006

LUT of CLB as a functional generator to confine
sequential part.

To evaluate testability of our controller we have
mjected faults into modules of our VHDL description,
thus extra information is extracted in order to select the
appropriate testing strategy.

We can mject faults into any modules of VHDL
description by making changes in instruction or in data
content; changing membership function, changing
assignment instruction. .. etc.

Figures 11 and 12 clearly show fault propagation
through the entire surface control, in the experiment
(Fig. 11), fault is injected in fuzzification LUT. The
effect of changing data path in the pipelined division
15 shown m Fig. 12

Fault 13 not masked but it 15 propagated in all the
system, that’s why we can use standard techniques of
test like BIST with 100% fault covering with 2% add CTL.B
or Boundary scan to test our controller. For Boundary
scan, FPGA already contain BS cells usable to get on- line
tests without adding any extra module.

Fuzzy testing rules: After injecting faults and studying
the resulting traces, we note that all faults are
propagatedand we can detect all these faults by scanning
the diagonal of the surface control which is done only by
scarming the diagonal of fuzzy memory rules.

In order to perform this method of testing, we have
added dedicated fuzzy rules TR-Test Rules in the free
space of memory rules without any change in original
parameter Fig. 13.

We assign to each line and column of memory rules
one tule T-S, values of each rule can be determined by
signature compaction (MISR) of rules™ or by adding
randomly one of the original rules in each line or colummn.

In test mode, membership functions activate 4 adjacent
fuzzy rules which activate 4 test fuzzy rules, then the fuzzy
controller continue normal functioning mode Fig. 14, the
result of defuzzification 1s imected m the both of
fuzzification modules as a test vector, only with this
condition we can activate the diagonal of memory rules.

With this technique there is no need to add any extra
module for testing; a simple organization of the fuzzy
controller structure can make testing more effective and
faster. The pipeline structure allows testing mode to be
executed on online mode by using one rising clock edge
of operating cycle.

This fuzzy testing method 1s a first step leading to
consider a new concept of fuzzy generation, fuzzy
compactionand fuzzy fault modelling for on line testing
and diagnosis. The developed testing method showed
that 1t 15 64 faster than standard testing methods such as

TS |seo |sae|ee|oe|ae]|ee

Fig. 13: Fuzzy testing rules

Fuzzification
X
|
X
Defuzzification

Inference

Crisp

Fig. 14:Fuzzy test mode

full scan, partial scan and AD-HOC means experienced on
locally defined benchmarks and 0% of area overhead.

CONCLUSION

In conclusion, three new major actions are reported
and used to design the fuzzy controller: multiple accesses
to look up tables, fuzzy test rules and pipeline methods
for computing defuzafication data; tlis makes our
contribution valuable and deserves extra focus to present
a structured design method which could lead to get better
controller performance for any application.

The implementation of fuzzy systems using VHDL on
FPGAs and where each design stage is revisited to
improve testability as circuit grows has become a
structured design technique but to get more benefits from
FPGA and to mtroduce new testing method, we used
VHDL behavioural description that allowed us to
introduce new pipelined structures for enhancing global
system performance.

Now our efforts are directed to design a fuzzy
controller with high degree of reconfiguration in the form
of a well structured TP software-hardware core. The fuzzy
signature mtroduced m this design will certamly get more
support and mterest in the future.

1468

Asian J. Inform. Tech., 5 (12): 1464-1469, 2006

REFERENCES

Kandel, A. and G. Langholz, 1998. Fuzzy hardware:
Architectures and Applications, Kluwer Academic
Publishers Bostan.

Dubois, D. and and H. Prade, 1980. Fuzzy sets and
systems: Theory and applications, Academic Press.
Kilinx, 1999, XC4000E and XC4000X Series Field
Programmable Gate Arrays, Xilinx Inc.

Muresan, V., D. Crisu and X. Wang, 1997. From
VHDL to FPGA a case study of a fuzzy logic
controller, proceeding of mternational conference of
young lectures, 83-80, pp: 11-17.

1469

5.

Marek, J., L. Grantnerand K. Koster, 1996. Digital
fuzzy logic controller: Design and implementation,
[EEE transaction on fuzzy systems, pp: 4.

Passino, K. M. and 3. Yurkovich, 1998. Fuzzy Control.
An Imprint of Addison-Wesley Longman.

del Campo, 1. and .M. Tarela, 1999. Consequences of
the Digitization on the Performance of a Fuzzy Logic
Controller, IEEE transaction on fuzzy systems, pp: 1.
Laoumri, A., 2002. Test fonctionnel d’un controleur
flou these magister Universite de Setif Algerie Dept.
electronics.

