Medwen

Onlline

© Medwell Journals, 2006

Asian Journal of Information Technology 5 (12): 1356-1360, 2006

Semi-Formal and Formal Notation Automated Assessment

"Noraida Haji Ali, *Zarina Shukur and *Sufian Idris
'Department of Computer Science, Faculty of Science and Technology,
Kolej Universiti Sains dan Teknologi Malaysia, 21030 Kuala Terengganu, Terengganu, Malaysia

"Department of Computer Science, Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia

Abstract: Computer-Aided Software Engineering (CASE) 1s the application of mformation technology to system
development activities, techniques and methodologies. CASE tools are software that automate or support one

or more phases of a systems development life cycle. Basically students or academicians use CASE tools to

understand the theory of the concept. However, some versions of these tools do not focus on the needs of

students or academic users who will need more assistance to understand the theory itself. In this paper, we
discussed the formalizing object-oriented and previous researches. Also we discussed the architecture of
Object-Oriented Model Assessor (OOMA) which is proposed for development. The specification approach
presented m this prototype 1s focused on the development of diagram assessment system for mapping diagram
from UML model into Object-Z specification. The objectives of this research 1s to improve student’s
understanding on how to represent the system requirement in UML model and Object-Z specification model.

Tn addition, it could also improve students’s understanding on the relationship between these two models.

Key words: Object-oriented modeling, formal modeling, UML and object-Z

INTRODUCTION

Models are crucial in engineering principal because
engineers to use them to describe shapes or actions of
the construction they want to build. There are various
kinds of models in programming contexts and one of them
15 object-oriented model. Object-oriented model can be
llustrated by using semi-formal and formal notation.
UMLM is cne of the semi-formal notation objects, while
Object-Z" is formal. Although semi-formal netation like
UML 1s popular and easy to comprehend by the users,
it 1s vital for developers to know the formal method
because it can assurance the creation of programming that
fulfill the users’ need™. Hence, it is an advantage for
developers to master both models because it equip each
other.

Model UUMI, and Object-7 can be produced with the
help of CASE tools like Rational Rose™ for UML and
Wizard for Object-Z¥. The purpose of CASE tools is to
reduce the gap between theory and practical. However,
the tools do not focus on the learning environments
which need more aids to increase users’ understanding
especially for students. Hoggarth and Lockyer™ found
that thewr students for System Analysis and Design
course gave comments and responses that they

understand the theory taught in class but it was hard to
apply in practical form especially in given exercises or
tasks. Furthermore, the available tools are unable to help
the students to recognize the relationship between UML
and Object-Z. To solve the above problems, this research
suggested a design tool that can automatically evaluate
the notation m model UML and Object-Z. We called the
tool as Object-Oriented Model Assessor (OOMA). This
tool 13 hoped to help students to understand how to
represents a system need in semi-formal model like TUMI,
and formal model like Object-Z.

Related work: The previous researches show that
object-oriented in semi-formal model can be used to
produce object-oriented m formal model. On the whole,
there are many researches on the formalization of both
models which was done by the researchers for the past
few years. Every research has their own differences and
strengths in their respective approaches. Figure 1 shows
the relationship between the researchers and the research
in this formalization.

The early research started in 19908 when
Object-oriented notation, OMT was used by the
programming engineer to model the programming. In 1992,
the formlization of model OMT and VDM++ were done by

Corresponding Author:

Noraida Haji Ali,Department of Computer Science, Faculty of Science and Technology, Kolej Umiversiti

Sains dan Teknologi Malaysia, 21030 Kuala Terengganu, Terenggamu, Malaysia
1356

Asian J. Inform. Tech., 5 (12): 1356-1360, 2006

Durr & ol., 1992

VDM+H
Weberefal, 1996 "
[g S

OMT (Ohjeot

Wang et al,, 1997
i _Loros]

| Dupuy et al., 1997, 199!
P

OBJECT-Z

Mayer ef ai., 1999 N B
Ledang and Souquieres, 2001

Kim, Carrington, 1999, 2000, 2002

UML (Unified | yoreirs and Araujo, 2000
modelling language) | wiaq, Ling Lin, Li Li, 2003
Ebba, 2001

Mc Umber, Cheng, 2001
- :I Promela/SPIN |

France ef al., 1997
FMT/ Bruel et af_, 2000
Fusion/UML Bitiner and Kemmuller, 2000

Fig. 1. The relationship between researchers and

formalization studies

Durr et al!. Tt was followed by other researchers who
formalize the same object-oriented notation with other
formal specification like Z, LOTOS, Object-Z and B.
Wang!”? had formalized OMT model by using LOTOS
while Weber™ had combined class diagram and situation
diagram (statechart). Meyer et al.”! and Bertino et al.™
had mterpreted OMT diagram to B specification. Besides
that, Dupuy et al!""'¥ had also formalized OMT by using
Object-Z

Beginning in 1997, when object-oriented model,
FMT/Fusion UML was produced, formalization was done
to this model with the specification of 7Z formal and
Object-Z. Formalization studies continued with the
formalization of Object-Oriented FMT/Fusion UML with
the formal Z specification and Object-Z. France et al. had
developed a prototype of FuZE which automatically
generated 7 specification from Fusion Object Model™.
Other studies had transformed FMT (fusion Modeling
Techmques) to the formal Z specification with FuZed
tools™. The Object-Oriented Model was updated to
produce UM model which became the standardize model
in Object-Oriented design. In late 1990s, formalization
studies focused on UML model and Object-Z
specification. The early study was done in 1999 by Kim
and Carrington and later was developed by other
researchers as was shown in Fig. 1. Some of the studies
had developed tools for formalization purpose such as
OZRose and RoZ. The tools are capable of automatically
mapping the Object-Oriented to formal specification.

Object-oriented formalization: This section presents a
brief description of the formalization of object-oriented

Model x, using object-
oriented modeling

I

Formalizing process-
set of rules

Medel x, in
formal specification

Fig. 2: Formalized object-orinted method with formale
method

model. Formalizing object-oriented concepts m which
formal specification techniques are used primarily to gain
insights to the semantics of object-oriented notations. For
the purpose of this paper, the example of formalizing
object-oriented is given in this section. To get know how
this process happened, we describe the translation of
UML models of Object-Z specifications which proposed
by Kim and Carrington™. A class in Object-Z is a
template for objects that have a common state and
operations. UML has been accepted as a standard OO
modeling notation by OMG and is already popular in
industry. Object-Z 18 an object-oriented extension to Z.
designed specifically to facilitate specification mn an
object-oriented style. Using a well-defined object-oriented
formal specification like Object-Z (where most of the
fundamental concepts in object-orientation such as
object-identity, class, mnheritance and polymorphism are
supported but the specification techmque itself) to
specify the UML :

» (ves a rigorous way of exploring the concepts
embodied withun the UML

¢ Make formal reasoning of UML models possible

» Provide a precise basis for mapping between
different specifications language

According to previous researchs, there have several
of terms to describe the formalizing process such as
combimng, integrating, translation, interpreting,
transformation and mapping. However, these techniques
have a same propose, that is, to formalized object-
oriented method with formal method. Basically, this
formalizing process can be mdicated in Fig. 2.

A group of researchers have debated the benefits of
incorporating formal modeling inte object-oriented
models™. Some of the advantages include it could:

1357

Asian J. Inform. Tech., 5 (12): 1356-1360, 2006

¢+ Help system developers have a better and clearer
understanding on the flow of the systen and in
particular the requirement specification.

* Enable components to be reused.

* Improve the analysis and design techmiques m the
development of software with a more coherent
models.

+ Be used in validating the semantic of the models.

+ Make the analysis and design phases more accurate
and complete.

Figure 3 show the example of UML class diagram for
simple process in bank system. In this UMIL class
diagram, there have a few notations such as classes,
assoclation relationship, generalization and so on. To get
the scheme on how Object-Z specification was produced
from UML class diagram figure, Fig. 3 shows the UML
class diagram™.

The diagram represents most UML class construct,
namely class,
association class

association, composition association,
and generalization. The diagram
consists of two major entities in the system : Customer
and Account. Each class has its own attributes and
operations. Class Account is further classified nto
CheckingAccount using generalization in UM
(represented by triangle symbol). The Checkingdccount
15 associated with class checkbook. The multiplicity
1.20 means that an instance of
Checkingdccount maps to at least one mstance of class
checkbook and at most twenty instances of checkbook.
The checkbook has a composition relationship with class
check (represented by filled diamond symbol). An
assoclation class transaction represents a relationship
between class customer and account and has its own
attributes.

UML class diagram was mapped to Object-Z
specification with a set of rule which was laid down by
Kim and Carrington!'? constructs:
classes, associations, classes and
generalization that appear in a class diagram map to their
corresponding Object-Z constructs using the predefined
mapping functions. To comprehend the mapping process,
an Account class was taken as an example and Fig. 4
below shows the production of Object-Z specification
according to the class diagram figure for Account class.

For Account class, it was mapped as a scheme which
will be called as Account in Object-Z specification and for
every attribution, which are acNo and balance; it was
mapped as situation variable. While for its operations,

constrains

. Individual class
assoclation

which are Withdraw and Deposit, it was mapped as an
operation schema in Object-Z specification.

Account
(=)acNo: Int L L
{+)balance: Int=0
(+) withdraw
¢+)daposit

Nare: String
Address: String

Trangaction
date: Date

CheckingAccoumt
Credit. limit: Int

accoum

book]1..20
Check book

2 Chek |
heck Check

Fig. 3: UML class diagram for bank system

Account
| (balance, Withdraw, Deposit)

acNo: N
balance: &

ac? TN
ammount?; € ammount?; G

— Withdraw ———————— Deposit
N F

Fig. 4. Object-Z specification

Object oriented model assessor (OMA) arhitecture:
The proposed architecture of OOMA 1s shown as n
Fig. 5.

Generally, OOMA consists of two modules; a module
for teacher and a module for students.

Teacher module: This module requires inputs from
teacher. Teacher can input UML class diagram as the
model solution for given problem from Rational Rose
Tool. The main process in this module is the mapping
process. The function of this process is to map the UMI,
class diagram into Object-Z specification. The generated
Object-Z. specification will be checked by a typechecker
such as Wizard. The teacher 1s required to complete this
generated Object-7 specification by mput the predicates
of the specification.

Student module: This module requires two mputs from the
students; UML class diagram and Object-Z specification.
UML class diagram will be drawn by using Rational Rose.
The system will check the class diagram based on three
aspects;

s Syntax Analysis
This process will check the syntax for UM class
diagram. For example, necessity items in an object
like class name, attributes and operation.

13358

Asian J. Inform. Tech., 5 (12): 1356-1360, 2006

Fig. 5 Anichitecture of OOMA

* Verification Process
This process will check whether the inputs of TUMI,
class diagram are accurate. This process will compare
students’ input with answer schemas by teachers.

* Language Checking.
This process will check the naming of classes,
attributes and operations. For example, for items n
classes” name and its attributes, it is presume to use
nouns as the naming while for its operations, it is
presume to use verbs as the operations” name.

The above processes are carried out in order to verify
that the mput diagram 1s error free. Apart from that, 1t will
also generate list of feedback to be used as guidance by
the leammers and hopefully it helps to improve their
understanding in subject matter. On the other hand, the
second 1nput requires the students to provide the Object-
7. specification. However, this input only available when
the earlier received (i.e., during first input) class diagram
is error free. The automatic checking process was done by
the system 1s accomplished by comparing the students’
diagram with the solution diagram, which was derived
during the mapping process carried out within the teacher
module.

The automatic checking process involves two
activities namely the structure analysis and verification
process. These activities are carried out to verify that the
Object-7Z specification is correct. As a result, a list of

feedback will be generated from the two activities above
(1.e., structure analysis and verification process). This
feedback can be used as guidance for students to
recognize the mistakes made by them during the Object-z
specification design. In addition, the system also
produces reports that provide details regarding to the
students level of understanding and their level of basic
knowledge i UML and Object-Z modeling.

CONCLUSION

In this study, we have presented the architecture of
Object-Oriented Model Assessor (OOMA). Generally, the
purpose of OOMA 15 to map UML class diagram model to
Object-7 specification and to evaluate the input TUMIL
class diagram by the users. Although there are some tools
developed for the same purpose, most of the tools
implemented the process of mapping the Object-Oriented
Model to formal specification and the mapping
implementation 1s automatically done without explanation
for the users. Tt makes the tools suitable for engineers or
programmers but not suitable for users mn academic fields.
The suggested process in this prototypes are hoped to
help students to have better understanding m the basic
concepts of Object-oriented Model, UMIL and formal
specification, Object-Z and finally UML class diagram.
The objective of this research is to improve students’
understanding on how to represent the system
requirement in UMIL model and Object-Z specification
model. In additon, 1t 18 to 1improve students’
understanding on the relationship between these two
models

REFERENCES

1. Smith, G., 2000. The Object-Z Specification
Language, Advances in Formal Methods, Kluwer
Academic Press Publishers.

2. Terwilleger, R.B,, M.J. Maybee and 1..J. Osterweil,
1989. An Example of Formal Specification as an Aid
to Design and Development. Proceedings of The
ACM SIGSOFT International Workshop on Formal
Methods in Software Development.

3. Rumbaugh, J., M. Blaha, F. Premerlar and W.1. Eddy,
1991. Object-oriented Modeling and Design, London,
Prentice Hall.

4. Johnston, W., 1996. A Type-Checker for Object-Z,
SVRC Technical Report TR96-24, University of
Queensland.

5. Hoggarth, G. and M. Lockyer, 1998. An Automated
Student Diagram Assessment System. Proceedings
of the 6th Annual conference on Integrating
Technology mnto CSE-IT1CSE. Dublin City.

1339

10.

Asian J. Inform. Tech., 5 (12): 1356-1360, 2006

Durr, EH. and I. V. Katwijk, 1992. VDM++ - A Formal
specification language for object-oriented design,
proceedings of the CompEURO [EEE Computer
Society Press, pp: 214-219.

Wang, E., H. Richter and B. Chen, 1997. Formalizing
and Integrating the Dynamic Model with OMT,
Proceedings of the 15th SoftwareEngmeering
International Conference, pp: 45-55.

Weber, M., 1996. Combining StateCharts and 7, for
the Design of Safety-Critical Control Systems,
FME'96:Industrial Benefit and Advances in Formal
Methods, LNCS 1051, pp: 307- 326,

Meyer, E. and J. Souquieres, 1999. A Systematic
Approach to Transform OMT Diagrams to a B
Specification, FM'99, LNCS 1708, pp: 875-895.
Bertino, E., D. Castelli and F. Vitale, 1996. A Formal
Representation for State Diagrams in the OMT
Methodology, Proceedings of the SOFSEM : Theory
and Practice of Informatics, 1175, pp: 328-334.

11.

12.

13.

14.

15.

16.

1360

Dupuy, S., Y. Ledru and M. Chabre-Peccoud, 1997.
Integrating OMT and Objek-7, Proceedings of the
BCSFACS/EROS.

Dupuy, YL. and M. Chabre-Peccoud, 1998.
Translating the OMT Dynamic Model into Objek-Z,
Proc. of the ZUM, pp: 347-366.

France, R.B., I.M. Bruel and M.M. Larrondo-Petrie,
1997. An integrated object-oriented and formal
modeling environment, Object-Oriented Programming
Journal.

Bruel, I M. andR.B. France, 2000. Transforming UML
Models to Formal Specifications, Proceedings of
OOPSLA.

Kim, 3.K. and D. Carrington, 2000. A Formal Mapping
between UML Models and Object-Z Specifications,
Proceedings of the ZB2000, pp: 2-21.

Kim, 3.K. and D. Carrington, 1999. Formalizing the
UMIL, class diagram using Objek-7, Proceedings of
the 2nd IEEE conference on UML, pp: 83-98.

