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Abstract: The supervision of many technical systems is often a challenging task due mainly to various
nonlmearities. In this study, a multi-model approach for fault detection and diagnosis 1s proposed as an
effective way since it allows to derive good process models valid over a wide range of operation and
subsequently to detect changes of the current process behaviour. The diagnosis task is accomplished by
decomposing the complex process into several sub-processes in order to generate a set of structured residuals.
The validity of the approach 1s illustrated on the well known academic three tanks benchmark and different
faults can be detected and 1solated continuously, over several operating regimes.
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INTRODUCTION

Due to the mcreasing complexity of modern techmcal
processes and the growing demands for quality, cost
efficiency, availability, reliability and safety, there is a
need for effective fault tolerant control and process
supervision techniques. Fault tolerance can be achieved
either by passive or by active strategies. The main
principle behind the passive approach is to ensure that
the controlled system becomes insensitive with respect to
faults. However, fault
accommodation, 1.e. the reconfiguration of the control

the active study provides
policy when a fault has occurred. Thus, fault diagnosis
has become an important issue and during the last three
decades a lot of work has been done in this area, resulting
m different techmques with various acceptances in
practice.

Most of the model-based FDI technologies have
been developed for the linear systems, but the monitoring
and the diagnosis of nonlinear processes remains a
challenge. In general, the nonlinear systems are firstly
linearised at an operating point and then robust
techniques are applied to generate residuals, which are
robust agamst limited parameter variations. The strategy
only works well when the linearization does not cause a
large mismatch between linear and nonlinear models and
when the system operates near the specified operating
point. Therefore such techmques have himited robustness
when considering gross plant changes and nonlinearity.

In the lack of first-principle models, empirical
models like neural networks can be used for the
purposes of process supervision. The main problems
with these approaches are the difficulty in analysing,
n a rigorous mathematical their
robustness/sensitivity and the scalability; 1.e. a network
trained for a specific plant may be inappropriate for
other plant. To overcome the problem of precision and
accuracy i FDD, various approaches based on fuzzy
logic have been also suggested. However, the fuzzy logic
approach is not only required on its own, but as a
framework for combining different paradigms. More
specifically, quantitative model-based and soft-computing
are combined to exploit the benefit of each. Another
powerful approach for residual generation 1s based on
observers. The common way is to obtain a set of residuals
by comparing the actual measurements with their
estimates obtamed with the help of observers.
Unfortunately, the design of nonlinear observers is not a
straightforward tasl, even if the nonlinear process is
completely known.

way,

Overview of fault detection and diagnosis: Different
approaches for fault detection and diagnosis using
mathematical models have been imtiated and developed
from the early seventies to mow, seel". They can be
splinted in two categories. The first one is based on state
estimation and includes detection filter, parity space
approaches as well as observer-based methods®™. The
second  category parameter
techniques™.

includes estimation
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Generally, automatic fault diagnosis can be viewed as
a sequential process involving two stages:

*+  symptom extraction
» fault diagnosis

Symptom extraction is mainly required for data
reduction. Many methods have been developed during
the past decade and the choice of a specific model 1s
somewhat dependent on the nature of the process. The
symptoms can be analytic or heuristic. While analytic
symptom generation is based on measurements, heuristic
symptom extraction requires a human operator observing
the process. In the fault diagnosis stage, the task consists
of the detection of the type of fault with as many details
as possible such as the fault size, location and time of
detection.

In model-based fault detection and diagnosis, the
most important task is the generation of residual
signals which are independent of the disturbances.
The most common way uses observers. The basic
idea behind the observer or filter-based methods is
to estimate the states and the outputs of the system
from a subset of the measurements by using either
Luenberger observer(s) in a deterministic setting or
Kalman filter(s) in a stochastic setting. Subsequently,
the weighted output estimation error 18 used as
residual signals.

MATERIALS AND METHODS

The major motivation for the multiple modelling
methodologies 1s that locally there are less relevant
phenomena and mteractions are simpler. Under this study,
the underling nonlinear mapping 1s inferred by a local
approximation using only nearly states.

The basic philosophy behind this modelling strategy
15 to partition the input domain mto multiple subsets.
Such local representations include RBF nets and fuzzy
systems™®”. The locality property can be used to make
models more interpretable and computationally efficient.

A large number of nonlmear, dynamic processes with
m inputs u and one output ¥ can be described in the
discrete domain by means of Eq. 1

yk) =1(xk)
x(k)=[u,(k-1)---u,k—n),
u, (k=1),--u_ (k-n_)
ylk =1} y(k—n,) ]

(1

The nonlinear function f () can be approximated with
the Local Model Networks

§(x,8)= §,(.0)0,(0) 2)

1=1

where, x is the observed input vector and 6 =[07,...,
0.7 is the parameter vector and ; defines the operating
point of the system, usually given by a function ; =H(x).
This 1s a vector which often can be defined on a lower
dimensional subspace of the input space to form the
gating or weighting functions for the local models (which
are defined on the full input space). The basis functions
used are defined,

q)(d(i,cl,q))
> o(dixe,0))

p(x)= (3)

where &(.) is the underlying normalized basis
function, e.g. a Gaussian ¢(d) = exp(-d’/2) is a weighted
Euclidean distance metric which measures the distance of
the current operating point ; from the basis function
centre ¢ the normalized basis function p(.) now sum to
umity. The local models used are linear:

yl(x,el):[le]-Q 4

If the centres and standard deviations of the valdity
functions are known, the estimation of the local linear
model parameters 0, is a linear optimization problem. The
parameters can therefore be evaluated by employing linear
least squares optimization algorithms. In the following
subsection, we consider the learning of parameters of the
local models for a given model structure, 1.e. we are
estimating 0 for an a priori given set of ¢, 0.

Parameter estimation: For locally linear models, the
coefficients can be estimated using the least squares
method on the prediction targets Y. Once an mitial
structure is defined (i.e. ¢’s and 0,’s) and local models as
i (4), so the learming problem 1s a straightforward
application of linear regression techmiques to find
parameters 8 which best fit the data. The available data
samples are collected in the regression data matrix X and
the output vector

X Y1
T

x=| % | y=|¥ (5)
X; YN

where, N is the number of training data. Staking the
data mto matrices, we get the following regression model:
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Y=08"+z (6)

where @ 1s the design matrix, the rows of which are
defined by

&y :[Q(ik)[lXZ}a”':pc(ik)[lxz:ﬂ )

So that the design matrix @, vector of output
measurement Y and errors € are

®=(0 . 08) . Y = (v ya)

s:(el,rrr,eN)T

The standard least squares criterion for this
estimation problem is
J(G)z%(Y—CD@)T(Y—CDS) (8)

and the Moore-Penrose pseudo inverse of @, @' is used
to estimate the weights:

b, =Y =(0TD) @TY ©)

The computation of the pseudo inverse uses
the Singular Value  Decomposition (SVD) to
decompose any N x p matrix @, such that ® =
USVT and the pseudo inverse of @ is: & = US'V’

Then, the solution of the regression problem (6) can

be calculated:
8, =Vvs'UTY (10)

In tlis way, the learning is global because it 1s

based on assumption that all the parameters O
would be learned mn a single regression operation
and the local models cooperate to solve the

regression task. Unfortunately, this may not always
be computationally feasible if a large number of
traming samples or local models are needed for a
particular problem. With a global learning, the parameters
of the local models cannot be interpreted
independently of neighbouring local models, which
mean that they cannot be seen as local approximation
of the underlying system. An alternative to global
learming which 1s less prone to these disadvantages is
to locally estimate the parameters of each of the local
models as defined n Eq. 3 independently. This 1s
achieved using a set of local estimation criteria for

the ith local model

1

1(0) = (Y=08) Q, (Y-8 an

where i =1, . .. ,c. Q is an NxN diagonal weighting

matrix defined as:

Q; :diag(pi(i1)="'=pi(in)) (12)

Now, the criteria J; is minimized by the locally
Weighted Least Squares (WLS3) estimate of the local
model parameter vector 01. In matrix terms, now we have

wLs ~ (éWLSJ" ) "éWLS‘)T 13

éWLS,i = ( (biTQl(Dl )71 QiTQlY; i=1---c

where @; is an Nx(n+1) submatrix of @ corresponding
to the 1th local model.

Diagnosis by fuzzy approximate reasoning: The fuzzy
approximate reasoning scheme is an effective way to
take into account the  vagueness and  the
uncertainty which are inherently present m real world
applications. In the context of diagnosis, the domain of
possible events Q = (f}, f,,..., f,, ff) where f denotes a
particular faulty state, whule ff = ., stands for the fault-
free state. The symptoms {3,,3,, . . . ,3,} provide evidence
of faults. Every symptom S, is typically described by some
fuzzy sets like Low, Height or Negative, Zero,
Positive as shown m Fig. 1. The observation of some
symptoms 1s regarded as a source of partial mformation
that matches some rules of a fuzzy rule based system
which depends on the elements of the incidence matrix
A=A, Anentry A; # 0 means that the jth fault causes the
1th analytical symptom to become different from zero, 1.e.
Height. The approximate reasoning model consists of K
rules of the form:

R':IF 8,is A and---and S_is A
Thenf isB, and---andf, is BiM,r1

The firing strength of the ith rule 1s defined by the
product of the membership degrees of the corresponding
fuzzy sets:

“‘1(8) :H“‘A;(s,) (14)
i

where )5, is the membership function of the
fuzzy set A(S). The output is computed
by the weighted average™. In this way, the

overall
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Fig. 1: Analytic symptom description by linguistic
variables {Low, High} and their membership
funeton (%), 1=1,2.
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Fig. 2: The three-tank benchmark system

final result of the fuzzy inference system 15 a set
of membership value to the different faulty states.

RESULT AND DICUSSION

Benchmark description: The academic three-tank
benchmark process is used in the simulations. The plant
consists of three cylinders T1, T3 and T2 with the
equivalent cross section A (Fig. 1). These are comnected
sertally with each other by cylindrical pipes with the cross
section Sn. Located at T2 is the single so-called "nominal
outflow valve”. It has also a circular cross section Sn. The
out flowing liquid (usually distilled water) is collected in
a reservorr, which supplies the pumps 1 and 2. The pump
flow rate Q1 and Q2 denote the input signals, which are
controllable. The required level measurements are carried
out by piezo-resistive differential pressure sensors and
the reference pressure is the atmospheric pressure.

Let us define the following variables and the
parameters: a, outflow coefficients; h, liquid levels (m);
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i+ H— o —
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-0.02 r r r -0.02 T r T
0 100 200 300 0 100 200 300
time(s) time(s)
0.02+ 0.02 4
3 4
0.011 0.011
Ot [t} B
-0.01 -0.01 1
-0.02 r r r -0.02 r v r
0 100 200 300 0 100 200 300
time(s) time(s)

Fig. 3: Fault free

Q;, flow rates (m3/5); Q, and Q,, supplying flow rates
(m3/s), A, section of cylinder (m2); Sn, section of
connection pipe (m?2); where1=1,2.3 and (1, ) = {(1, 3);
(3,2); (2, 0)}. By using the balance equations for the three
cylinders, the model is setup as follows:

AT g0
A%:Qm —a, (15)
A% =Qn — Qs TG0,

where the follows are given by generalized

Toarricelli-rule,

Qi = a1SnSign(h1 _hz)\'2g|h1 _h3|
Qz =a;Ssign(h, 7h2)v2g‘h3 7h2| (16)

Qi =,5,4f28h,

The state vector is x =[h, h, h,]" and the input
vector is u = [u, u,]". The actual parameters are

A=00154m’. 8, =5x10"m*, Q.
=Q,, . =100ml/s,h__ =62+ 1cm,g=9.81m/s’,
a, =0.450,a, = 0.611,a, =0.462

The mechanistic model can be used to sumulate
different faults such as

»  Faults in level sensors;

»  Faults in pump output;

» Blockages in commecting pipes between tanks;
+  Leaks in each tank.
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Let us take the leakage in tank 1 as a fault caused by
a hole of radius 1, then according to the generalized
Torricelli-rule:

Qlleak = 313-':1-2 2gh, a7

and the dynamics of tank 1 with fault becomes:

dh
AT =Rt Q Qe a8)

Model structure: The task of fault detection scheme is to
detect changes of the curent process behaviour
compared to the nominal one during fault-free operation.
One possibility for the generation of symptoms is the
comparison of measured output signals with estimated
signals.

A set of structured residuals can be designed, each
mdependent of different mputs. Therefore, some mputs
do not have impact on specific residuals and the
decoupled residuals remain small, whereas the other
residuals are deflected. The pattern of deflected and
undeflected symptoms are are appropriate deatures for the
assignment of faults.

The selection of some suitable mathematical
relationships 1s not an easy task and often some expert
knowledge 1s necessary. Obviously, the expert knowledge
is also critical to determine the structure of the models, 1.e.
the number of fuzzy sets and the shape of the membership
functions. In the study under consideration, three basic

relationships are considered:

Ah, =E(h,;,Q,), where h, =H, -H, (19)

Ah, =F, (h,,.Q,.H,), where h,, =H,-H, (20

Ah, =F,(h,,,h,) @D
To obtain an additional residual, another relation has been
proposed

(Ah1+Ah3) =F, (hazan) (22)

In the 1identification of these relationships, the
membership functions are assumed to be Gaussian with a
number of five for every variable.

In a secod step, the different sub-models have to be

identified by means of suitable data. To obtam good
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Fig. 4: Fault in Q1
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Fig. 5: Leak in tank 2

Table 1: Incidence matrix
Faults

5 fiu fio fis Ty for  fous
ry
Iy
I3
Iy

for foou i fi, fs
1 o 0 1

=N
=]
—_ ==
==
==

0
0 1 1 0 1
1 1 0 0 0
0 1 0 1 0

o o = o

identification results the choice of the excitation signals
is of geat importance. Good results can be achieved by
using the so-called Amplitude-Modulated Pseudo
Random Binary Signal (AMRBS) which is an extension of
the standard PRBS. Instead of applying only two
amplitudes-which 1s sufficient for linear processes-the
amplitudes are distributed over the whole range of values
in order to ensure that all amplitudes of the excitation
signal appear with the same probability

Diagnostic reasoning: The effects of all faults are
summarized m the incidence matrix of Table 1. Each fault
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Fig. 6: Fault in pump Q, followed by a leak in tank 3

leads to significant deviation in at least one residual.
Therefore all faults can be detected. However, using the
proposed residual set, only seven different faulty states
can be isolated:

.flzle\/le’ .fZZles
of, =, vl vi . ef, =1
of =1y, ofy =1, vig,
ofT = fh3
The behaviours of the four residuals r... 1,

(analytical symptoms) are shown in Fig. 4-6. Fig. 3
corresponds to the fault free situation but the rest of Fig.,
a fault 1s provoked at time t = 150s.

Fig 4 shows the values taken by the residuals when
a stuck in pump Q1 is provoked. As can be seen in
Table 1 shows the residuals 11 and r4 have to change their
values, but 2 and r3 must stay near zero. TFig. 5
corresponds to a leak mn tank 2 where the only residual 12
has changed. Fig. 6 shows the effect of a fault m pump Q1
betweent= 100s and t = 150s followed by a leak in tank
3 after t = 200s. The fuzzy rule-based system consists of
eight rules; one for each faulty state and one for the fault
free state.

CONCLUSION

This study describes the fault detection and
diagnosis of technical plants in a systematic way. The
analytic redundancy concept is used to detect changes of
the current process behaviour compared to the nominal
one during fault-free operation. The symptoms are
extracted by the comparison of measured output signals
with estimated signals. Tn order to cope with uncertainty,
the residual evaluation step is based on fuzzy approximate
reasoning scheme to produce a ranked list of possible
fault candidates.
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