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Stability Testing of 1-D and 2-D Digital Filters Using the Method of
Evaluation of Complex Integrals
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Abstract: The stability testing of 2-Dimensional recursive digital filters had been a very hot problem in
1970's and 80's. The right solution is not available though some researchers have been working on this
problem even now. We have proposed in this paper a new test procedure (may be an alternative to JTury-
Marden algorithm) to test the stability of 1-D recursive digital filters. We also gave for a restricted order 2-D
digital filters, a method to test the stability of the given transfer function which is devoid of nonessential
singularities of the second kind. Tn both the 1-D and 2-D cases the available methods of evaluating the
complex integrals for variance is used to conclude about the stability of the filter.
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INTRODUCTION
Several methods do exist to determine
whether a  particular recursive digital filter, 1-

dimensional (1-D) or 2-dimensional (2-D), is Bounded
Input Bounded output stable or not'"!. In the case of 1-
D digital filters the most efficient method 1s Jury-Marden
table method, lucidly explained mn'”. For 2-D quarter
plane filters many methods like root mapping and
numerical methods are available in the literature which
appear in a monogram .

In all the methods to test the 2-D filter stability,
the absence of nonessential singularities of the second
kind is assumed and the denominator polynomial of the
2-D transfer function of the filter is tested.

Some of the latest methods of testing for stability
are by Bistritd ",

We first introduce the concept of 1-D stability
testing in this section and the notation used in this

paper.

Theorem 1: A 1-D digital recursive filter whose transfer
function H(z) is given with B(z) being its denominator
polynomial, is stable if'*!

B(z)¢‘2|21 (1
So the techmque of testing for (1) can be either

by directly finding the zeros of the polynomial B(z) or
using Jury-Marden algorithm®. The latter is more

efficient and accurate particularly for polynomials of
very high degree.

If h(n) is the impulse response of the 1-D
filter, it can be shown using Parseval's Integeral of (2)
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]
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using z = /7.

For a stable H(z) the RHS of (3) is always positive
and fmnite. If in (2), on the right hand side the
intergration is done in the clockwise direction it can be
shown that with

z =",

1
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This 18 equivalent to saying that in H{z), zis
replaced by 1/z and we substitute
.
7 =e

in the Parseval's integral we do get the same value for
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but with a negative sign This means that if H(z)
is stable transfer function with all its poles inside the
unit circle, the Parseval’s identity of (2) will result in a
positive value for

7® h2(n)

In the second case of all the poles of H(z) lying
outside the unit circle the same but negative vlaue
will result onintegration for

We know that in the second case the 1-D filter is
unstable, vide, Theorem 1. If some of the poles of
H(z)are outside the unit circle and some are inside
the unit circle, we may get positive value or negative
value for

50 hz(n)

If it 1s negative we can defimtely say the filter is
unstable. Tn case it is positive we cannot take that the
filter is stable. Further investigation has to be done to
determine about the stability of H(z) using conditions
(12). In this paper we review the methods given by
Hwang'*" for the evaluation of Parseval’s integerals
(complex mtegrals) in the 1-D and 2-D cases in section
II. We deal with the stability testing of 1-D recursive
digital filter in section ITI. Tn section TV we deal with
stability testing of 2-D filters, restricting ourselves to
the filters of order 2. We conclude in section V.

REVIEW OF HWANG'S METHODS

In this section, we briefly review the methods
suggested by Hwang™” to find out the complex
integrals giving variance both in 1-D and 2-D cases.
He assumes, since he iz basically
evaluating either

interested in

SO_ hmor X 2P o ki m)

for stable filters, that the given transfer functions are
stable meaming that Theorem 1 is satisfied in 1-D case
and in the 2-D case if the transfer function H(z,, ) is
defined as

M N
> X aiJ zZ,' Z,
i=0j=0 Alz,.z
H(7,7,) = S0 - 2k @
i Brz,z)
> ¥ bi' 7' Z
i=0j=0"Y
then ,
Bfz,z,) = 0 |z =2 |z]| =1 &)

assuming that there are no nonessential singularities of
the second kind'®.

In the 1-D case Hwang uses the Laurent series
expansion and shows that if

L X0 i =,

where #, is obtained by using the decomposition

Az)A(Z) Pz) Kz &)

N )= S B) Bz B

and dividing P(z) by B(z) once to get /2. It should be
noted the degree of P(z) has to be necessarily chosen
the same as that of B(z). In the case of 2-D recursive
filters, the decomposition of the form (6) 1s not possible
as shown m'". So Hwang"”! has given the following
method to obtam

2
Tm=0 Zn=g " 1),
Let
M N
>y ¥ aIJ z z
Hiz,7,)= 020 MEZL )
iZoizo 07
Then,

Alzz) Alz]\z')
Biz,z,) B(z .7 )
+. +pN(2) q,( 7 )z +.+ qu(7’) )
by(z; )Z;N + bylz 7])

Hiz,2,) Wz z')=

_pfz)7”
O(ZJ)ZZ ot byizg)

From (8), equating the like coefficients, a matrix equation
15 obtained, where the vector matrix

[qu(zl_l): Q1(Z1_1) ------- qN(Zl_l)Jpl(Zl):pl(Zl) ----- PN(Z1)]T
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15 an unknown. The solution of the matrix equation
gives

qu(zfl)

Then it has been shown that

G 1 ) dz
£ Ewmw -], et o
m=0 n=0 27[_] R b[l Zl) Zl

So far nobody has given a simple method to solve the
matrix equation for higher order 2-D recursive filters.
Also to evaluate the 1-D integral (9), there 1s no siumple
method except to use the residue method.

STABILITY TESTING OF 1-DFILTERS

In this section we propose a method, using the
complex integral evaluation, to test the stability of 1-D
recursive digital filters. We give a few examples to show
that our method always works.

Since we are interested in the stability of the transfer
function H(z), for simplicity we assume that H(z) is of

the form
Hrz) = =
z

with by > 0 We then use the decomposition of the form
given in (6) which results in a matrix equation.

ba bf bz bN ba b] bz bN
0 b b - by, b .. b,, b, 0
0 0 b, « by,|+ |b, = b, 0 0
0 0 0 b, by, 0 0 0
P, 1
», 0
P, =0 (10)
r 0

Tt has to be noted that to get (10), we don't have to
assume the H(z) is a stable transfer function. Or in
otherwords polynomial need not satisfy the Theorem 1.
Tt is because even if H(z) is not a stable transfer function
it can be expanded by longhand division like

Hz) = Y h
i=0

and

Hz) Hz') =% S hhz'z ()

i=0 =0

The constant part of the RHS will give us

@

S hi = Yhien)

i=0

So the decomposition of the type (6) resulting in the
matrix equation of the form (10) can always be used to
evaluate

Tl h

as done in' like

whzn:l&-:lfﬂ-:r.
; {n) b, 5 2

In this we have three cases as discussed below.

Case (i) : All the poles of H{z) or zeros of B(z) are inside
the umt circle |z| =1.

In this case H(z) is a stable transfer function and the
r, we get will be finite and positive as discussed in'*.

Example 1: Let
1
2 -0.42 -0.93z" +0.4122°

+0.11722"- 0.04942+0.0035

H(z)=

Tt has been tested that all the poles of H(z) are
inside the unit circle. The value of

¥, = 4.3368, which gives Z;‘): 0 hz(n).

So we sunply find out 7, and 1if 1t 1s positive, we test for
the conditions

i B1)=0
i CDOYBED =0 12

and 1if these conditions are satisfied we conclude that
the given transfer function 1s stable. For this example it
has been found that B(1) = 0.1533 and (-1)° B(-1) =
0.2281 and so the filter 1s stable. Conditions (12) are the
same as the ones in Jury-Marden test.

Case (i) : All the poles are outside the wumit circle
lz| =1
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Example 2: Consider now the following transfer
function

1
~ l4z + 24

O

The 7, has been found to be equal to #, =-0.0026.
As discussed in Section II, this 1s a case where all the
poles are outside the umit circle and so the transfer
function H¢z) is an unstable one. So we get a negative
value for

R )

Case (iii): Some poles are inside the unit circle and
some are outside.

Example 3: Let us consider the following transfer
function,

1

Hyz) =
(z) 7 + 37z — 118z + 008

The #, for this case has been found to be r; = 0.0138.
Now we apply conditions (12) and see whether they are
satisfied or not.

i B(1)=3.60>0
ii. (-1 B(-1) =-396 <0

We find that the second condition i1s not
satisfied. So we conclude that the transfer function 1s an
unstable one. In fact the poles of H(z) are

% = -4, %, = 0.2and %, = 01.

Example 4: Consider the transfer function.

H(z)= — 1

Z 122" 052" -152" +182"
0752 1067072z 02718

Here r, = - 5581.0234. Simce it 1s negative we can
straightaway say that the filter is unstable without even
testing for condition (12). Now we state the following
theorem.

Theorem 2: A 1-D transfer function

of order N 1s BIBO stable if
1. f hfn =0 and finite

i, ];=(1 )= 0
iii. (DM B (-1)> 0.

Thus in this section we have given a method (may be
alternative and simpler than JTury-Marden algorithm) to
test the stability of 1-D recursive digital filters.

STABILITY TEST FOR 2-D DIGITAL FILTERS

In this section using the method suggested by
Hwang'” to evaluate the complex integral

e

e 7 I INEE
11, dz, dz

H(z 2, )—— (13)

1 2

We arrive at a method for testing the stability of 2-
D recursive digital filter having a transfer function H(z,,
7).

We assume that H(z, z) is devoid of
nonessential singularities of the second kind. We don't
assume that the given transfer function H(z,, 3) is a
stable one. Inspite of this, we can say the
decomposition of the type m (8) 1s possible and the
resulting matrix equation can be solved for qy(z™). We
restrict ourselves to second order transfer function H(z,,
7) since any higher filter design 1s done with a cascade
of second order transfer functions due to the
advantages like less coefficient sensitivity and less
quantization error etc. Since we are interested in only
testing the stability of H(z,, 7,) using Parseval’s integral,
we take H(z;, z) to be of the special form

1 1
H(szz) = N N e = B(@,Zz)

L X b,z 7

1=01=0
Let
H(72,)=— — (14

(iz} +kz + £)z) +/mZ + nz,+0)z,
+(pz +qz +1)

a = jzi + kg, + ¢
d = mzl + nz + o
g =pz + q7 + 1
at = jz? o+ kgt 4+ 4
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d' = mz! + nz!' + o
g =g’ + azf + o1
Using the Eq. (8), we get a matrix equation.
A d g i d g [ar] [ 1]
d g a7 )
—1 0
0 0 ql(zl ) — (15)
d g al d piz)
g 0 0 ail, L pz(zz), L V]
We solve (13) for q,z') and write
-1
qg(zil)
by(z, )
-1 -1
— (aa _gg) (16)

Caa” faa™ —gg™ ) —df—-dga +ada )+
gfg7dd” +ad” —aa”'g” +gg7)

S Q) dz,
MRS I Pl

We can use Matlab for both evaluating the RHS
(16) and then finding

im0 =g W)

by the residue method. Well it should be noted here that
to use the residue m ethod to evaluate the integral in
(17), we have to find out all the poles. A Matlab program
has been written for both evaluating the RHS of Eq. (16)
and then finding the 1-D mtegral (17) to finally arrive at
the value of

=g Ti—g Hmn)

As discussed mn Section III, the 1-D mtegral of
(17) should give always a positive value if

L = ewl
z, = &

are substituted in the Parseval's mtegral given in (13)
since

g Ty h (m)
is always positive. It should also give a finite value if
B(z, z)= 0Oon ‘ Z | =1 and | 22‘ =1.

In case the given transfer function is unstable
and is not infinite on the unit bicircle, the 1-D integral
value m (17) will naturally have to be negative since it
cannot give infinite value when we use residue method
to evaluate the 1-D integral (17).

Thus we conclude that if the 1-D integral gives a
finite positive value the given H(z;, z3) 1s stable and it
gives a negative value it must be considered that the 2-
D transfer function is unstable.

Thus we have the following theorem on 2-D recursive
fitter stability.

Theorem 3: The 2-D transfer function H(z;, z;) given by

i - 42

1s BIBO stable 1if
0 0 2
Z“mZO Zn:o h* (m,n)

1s finite and positive, where A(m,n) is the mverse z-
transform of H(z;, ).

We now give a few of examples to illustrate the
above theorem.

Example 5: Let

1

Hiz,z,) =
(4.2) (052, +0.2)z, + (052 +1)

The Matlab program gives the value for

Q(z')
and then
A,
bu(ZIl)
is given by
aWz') _ 2.5
b,(z] )z, (7, +18633)(z, +05367)
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5 3 v & P

bmd 27 {z;+18633)( 7 + 05367 )
25
13266

So the filter is unstable.

Example 6: Consider

1
H(Z,Zz) =

(z,-0.7)z, + {0.3-05z)

This is the same transfer function tested in'™
This gives for

TP, IO, W2 (myn) = 2.981424002

Since the variance is positive, the given transfer
function is stable.

Example 7:Let[ 1, p-129, b, ]

1
Hfz ,z, )=
()= o 05 1577 1877,

075z, +0622 -072z,+ 02718

This transfer function was found to be barely
unstable. Let us see what we get for the variance by the
method suggested in this section. We identify,

a = 7 -152 +06
d = 127 +182 072
g = 0527 -0752,+02718

a'.d"and g are obtained by replacing z by z;l m

a, d and g, respectively. We  used a  Matlab

program to evaluate
G(Z )
b,(z,*)

of Eq. (16) and we obtained

a0z 0464z —18217, +2.7237 18217 +0.464z]°

bz, ™) 00737z —0.58052" + 2048z —4.0903z,

+5.106—4.09037 " +2.0482, 2 —0 58057 *+ 0.0737z,"

and by using the residue method (Again using a Matlab
program) we obtained the value of

10

=g Zp=g H )
by evaluating the integral

U‘] Yz ) dz,
2m WER b 27)
as

L, B0, Hmn) =-41152

Since the variance is negative, we conclude that the
filter 15 unstable.

Example 8: Consider [1, p-124]
1

H =
(2.2)= 1 127%%,. 05215772 +1877,
075z, +0622-0.72z, + 020
This transfer function gave by residue
method
a0 o0 2 _
Y0 Zm—0 ¥ (mn) =0.5125

so the filer 1s stable.
Example 9: Consider [1, p-129.b,]

1
-0752%,+09:'-1.5z7]

H(szz): T
2

127713z +1222 +008z, +0.5

The wvariance for this example has been
found to be
TP, IO, W (mn) = - 0.07236

so the filer 18 unstable.
CONCLUSIONS

In this paper alternative perhaps slightly simpler
methods are given for testing the BIBO stability of 1-D
and 2-D recursive digital filters. The methods basically
follow the approaches suggested by Hwang'"' to
evaluate the Parseval's integral which will give the
variance. Probably, the method suggested for 1-D filters
is slightly more efficient than Jury-Marden table
method. In the case of 2-D filters though several
methods do exist, both mapping and numerical, they are
either less accurate or cumbersome even for second
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order filters. The method given in this paper for second
order filters is perhaps made simple because we have
derived using Hwang's a readily usable
expression for the 1-D integrand.

Since second order digital filters
building blocks for the design of higher order filters in
the cascade connection which reduces coefficient
sensitivity and quantization error the results of this
papers gain importance. The technique used here for
the 2-D filters 1s very tedious for lugher order filters like
the existing methods.

work”!

form the
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