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Abstract: Recently graph based SLAM has become a popular representation for solving SLAM problem but
it  is  affected  by  its  inherent  nonlinearity  due to noisy measurements and reprojection errors which lead to
non-consistent map. The proposed system provides the entire robot trajectory at lower cost using stereo camera,
generates a globally consistent 3D map and provides linear graph optimization. We show that the validation
of our system based on stereo camera which utilizes a linear optimization method which provides only one
accurate solution in contrast to the well-known nonlinear global optimization like BA of ORB-SLAM which
provides multiple non-accurate solutions for optimization. Furthermore, our system runs in real time and is 3X
faster than the current state-of-the-art SLAM systems for stereo SLAM. Our system gives comparable accuracy
compared with the state of the art. We tested our system using KITTI data sets. We show that our system can
be an alternative to bundle adjustment approaches with a better accuracy, robustness and more efficient than
some well-known systems. 
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closure

INTRODUCTION

SLAM is an active research topic for more than 30
years with overwhelming literature in the robotics
community (e.g.,). Mathematically, SLAM is modeled as
a high-dimensional nonlinear estimation problem whose
aim is to build a map for unknown environments in
obscurity of referencing systems like GPS and
simultaneously utilize the built map to find the “optimal”
estimate for robot poses (location and orientation) and
correct errors of previous estimations using noisy
measurements and uncertain priors. The measurement
function is generally a nonlinear objective function in its
arguments especially in case of camera sensor. Since, the
distance  and  angle  of  robot  w.r.t  locations  of  features
are  computed  using  trigonometric  functions  that  are
non-linear  in  the  coordinates  of  the  camera  and
features.

Generally, a graph-based SLAM system can be
divided into three sequential modules (Bailey and
Durrant-Whyte, 2006) frontend, backend and map
representation. The frontend is used for measurement of
motion which processes sensor data to extract geometric
motion and spatial constraints (data association), e.g.,
between the key frame and map points at different points
in time. The backend (optimizer) is used to estimate and

correct the poses of the keyframes (maximum a posterior)
to obtain a consistent map of the environment given the
constraints from front-end. For this target, back-end
solutions have developed gradually from  lter based
methods (Davison et al., 2007; Civera et al., 2007; Li and
Mourikis,  2013;  Hesch  et  al.,  2012;  Lynen  et  al.,
2013; Jones and Soatto, 2011) to graph optimization
methods   (Klein   and   Murray,   2007;   Engel   et   al.,
2013;  Mur-Artal  et  al.,  2015;  Mur-Artal  and  Tardos,
2017).

In summary, we propose a real-time visual SLAM
system with the following properties: Our system keeps
the separable structure of SLAM, since we estimate the
linear variables using nonlinear measurements corrupted
by Gaussian noise. Thus, the investigated system has a
linearity property which is a significant improvement
compared to other systems.

Our system does not only maximize the accuracy of
the robot trajectory but also impedes drift-buildup that
minimizes the number of failures of the tracking. Thus,
achieving accurate and globally consistent framework
compared to that of the state-of-the-art techniques.

Our implementation provides a faster linear SLAM.
Furthermore, our proposed system can detect and correct
the erroneous loops in the trajectory of robot using stereo
camera.
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MATERIALS AND METHODS

System preliminaries and problem formulation
Graph based SLAM preliminaries: Let P = {p1, ..., pN}
be a set of N nodes representing position of a mobile
robot at consecutive time instants (frame poses) and ξ =
{e1, ..., eM} be a set of M edges represent relative
translation vector between every two nodes eij. The
objective of pose graph optimization is to compute an
estimate of the nodes con guration that maximizes the
likelihood of the measurements by using mathematical
model that is solved by linear method. Since, relative pose
measurements are affected by noise, the measured
quantities  are  in  the  form  where  sij0R3  is  aij ij ij+s  
zero-mean Gaussian noise, i.e., sij.N(0, cij) being cij a 3×3
covariance matrix. The uncertainty of each edge
measurement (covariance matrix) is obtained easilyijeC

from the uncertainties of the two frames locations as
given by Eq. 2 as follows:

(1)ij j ie p -p

(2)ije pi pjC C +C

Problem definition: The role of localization thread of
SLAM system is to compute positions of the robot
(frames) in the world coordinate frame: pt = {x, y, z}
where x, y, z are translation coordinates.

For each frame we need to find a set of 2D image
points U such that u = proj(X, t) where X0R3 and proj is
the projection function that, projects 3D triangulated
points X from current observation (X, t) in the map of
SLAM to the 2D image plane. 

Figure 1 shows the projection model of stereo
camera.  To  keep  the  model  as close to the ground-truth
as possible, we maximize the likelihood of the
measurements by using mathematical model that is solved
by linear method and minimize reprojection error. The
variables to be optimized are pt. It should be mentioned
that the projection function proj is strongly nonlinear,
hence, the optimization problem has many minima, hence,
we should have good initial solutions for pt. Fortunately,
the previous stage of RANSAC and triangulation provide
such good initial solutions (Fig. 2).

In a summary our target in this research is the
detection of loops and graph optimization. We can
distinguish  the  two  different  threads  as  described  in
Fig. 2, although, they are closely linked. The first thread
consists of the identification of a previously visited place
(loop). When a loop is detected, a new relation is added to
the graph that relates the current pose with the pose in the
past where we visited the same place. The second thread
tries to reduce the accumulated  errors from the pose
estimation based on pairwise alignment and reprojection
errors. This will get more consistent maps, especially
when a place is revisited after a long period of time.

Fig. 1: Stereo camera projection model

Fig. 2: Keyframe poses optimization and loop detection

General structure of proposed V-SLAM system: The
general structure of the proposed vSLAM system is
depicted in Fig. 3 and its main modules are described in
the following sections. Our system generates a global,
scalable and reliable 3D map based on pose-graph of
keyframes and computing relative poses of frames. Our
proposal SLAM system has three main modules; tracking,
loop closure and optimization modules. Our SLAM
system  can  be  divided  into  two  parts  front-end  and
back-end. The front end is used to determine camera pose
(translation and rotation) and detect loop closure. The
back-end part is used to optimize the trajectory of robot
by reducing accumulated errors using our new
investigated method. This ecient distribution allows for a
continuous tracking of the tracking module while the
global optimization and the loop closure ones are
processed in the background only when a new keyframe
is added.  System takes a set of pairwise relative poses
between cameras and rotations as input and outputs the
position of all keyframes in global coordinate. The camera
poses are computed through motion averaging  linear
algorithm.

Tracking module: Most visual SLAM systems used
stereo camera for tracking and mapping. A common
configuration is a stereo (two) cameras that are fixed
relative to each other with the fixed transformation
between  them  known  at  prior.  A  stereo-camera  is able
to recover ambiguous scale by exploiting the parallax
(difference) between the two captured images.
Unfortunately the parallax diminishes as the imaged scene
is very far from the camera (the two images become
essentially the same). We use a general stereo camera
model in which the camera mapping function is termed
perspective projection and the parameters for each frame 
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Fig. 3: Overview of the global vSLAM pipeline that is implemented in our designed system

the 3×3 rotation matrix, the 3×1 translation vector as
illustrated in Fig. 1, the focal length of every camera, the
baseline, the left intrinsic camera matrix, the right
intrinsic camera matrix and the two radial distortion
parameters and. The relations for projecting a 3D point
into image plan is:

(3)l lx K X

(this relation to project 3D point X to image plane that
converts from world to left camera coordinates):

(4)r rx K RX+t

(this relation to project 3D point X to image plane that
converts from world to right camera coordinates). In order
to use a stereo camera, we can estimate the intrinsic
parameters (focal lengths, skew and the principal point)
and  extrinsic  parameters  (rotation  and  translation
describe the pose of the right camera with respect to the
left camera) using camera calibration tool used in
(Mur-Artal and Tardos, 2017). We set the world frame
coordinates to coincide with the left camera frame
coordinate.

Our SLAM system initially loads the frames, then
detects and extracts the features, then processes them by
the tracking subsystem. Once the keyframe selection is
determined, an initial map is generated by triangulating
feature points in the initialization thread. Our global
tracking module pipeline is illustrated in block diagram of
our system. The pipeline of tracking based vision system
includes processes to detect features from each frame,
extract features from each frame, match the current frame
features to the previously frame features, compute relative
pose of the current frame with respect to the previous
frame and optimize relative pose computations using
Bundle Adjustment (BA) algorithm. The key solution of
global localization can be classified according to whether
the features correspondence is specified in 2D or 3D as
follows:

2D-2D feature correspondence: This type is used for
vision based localization and the relative pose between
two frames is determined by  decomposing of essential
matrix using a set of correspondence points from the two
frames. But the scale factor is unknown and we can
compute it independently.

3D-3D feature correspondence: This type is used for
stereo vision based localization and the relative pose
between two frames is represented by rigid transformation
and can determined by point clouds of the two frames
using ICP algorithm (Iterative Closest Point).

3D-2D feature correspondence: This type is used for
projection from world coordinates (environment or space)
to frame plane using 3×4 camera matrix (intrinsic and
extrinsic parameters) and the pose estimation is
computed, if there are three or more 3D-2D
correspondences are obtained, the pose estimation is a
problem called Perspective-n-Point (PnP) for perspective
camera.

The feature is a specific 2D structure in the frame that
can be descripted like point and corner. Detection of
image features is a key-operation for any visual system to
detect repeated desirable points then compute a unique
descriptor vector for feature used for feature matching. 
Oriented FAST and Rotated BRIEF feature (ORB)
(Rublee et al., 2011) is one of the most powerful invariant
rotation and fast feature descriptors that describes features
by binary representation, reduces runtime performance of
system and works as follows:

C The image is filtered using median filter, to eliminate
the noise

C FAST corner detection (for ORB feature detection),
a point P is considering a FAST corner when this
point has enough gray value pixels in different gray
area around the point
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C Determine the directions of these points in intensity
centroid

C Extracting BRIEF binary descriptor
C Determine low pixels blocks in greedy algorithm

Finally, the descriptor of each feature is a vector of
256-bit binary array descriptors that represents the
normalized histogram of image gradient at the feature
location. The next step is to track the image features into
the consecutive image frames, this necessitates matching
the features of every new frame to the old ones.  Two
features are considered matched when their descriptors
are similar to a sufficient extent. A matching function is
used to compare the two feature descriptors yielding a
matching value that will be compared to a threshold to
decide if there is a match. The matching function for ORB
descriptors is the minimum distance between the two
descriptor vectors and can be calculated using Hamming
distance which given by this function:

(5)      n

i i ii 1
Ham x;y weight b x b y


 

Where:
bi(x)0{0; 1} : Binary descriptor i of the current frame
bi(y)0{0; 1} : Binary descriptor i of the previous frame
q : Stands for bitwise XOR operation

Matching between frames is used to find
correspondence of keypoints over a sequence of frames to
keep only key frames to maintain robot trajectory which
whose topology differs according type of sensor used. The
outliers of matches are filtered  depending on constraint
of epipolar. The RANSAC algorithm is applied to get
fundamental matrix by discarding the matches whose
distance from frame points to their corresponding epipolar
line are >2 pixels.

Loop closure: This section illustrates the work of
detecting loops and correcting the erroneous of loops in
the pose graph of optimization. Our implementation is
based on visual feature matching to determine if an area
has been visited or not. For each new keyframe created by
the tracking subsystem, feature matching is performed.
We use a RANSAC algorithm with 30 iterations to check
for 3D-correspondences. If the number of resulting inliers
is above a certain threshold (40 matches), we consider
that the current frame and the keyframe to which pairwise
alignment is performed, a good matching. And hence, an
optimization with all matches are performed and a
similarity  transformation  SIM3  matrix  is  added  from
the current keyframe to each loop keyframe (4×4
transformation matrix is created). Only these keyframes
which have a higher similarity score than a threshold and
are  not  directly  attached  to  the  current  keyframe  are 

considered as loop keyframes. This thread is illustrated in
Fig. 2. Once a list of loop keyframes is found, this gives
a measure on the accumulated error.

The following steps are performed to increase the
robustness of our loop detection. First, the map features
detected in the loop keyframe and its non-directly
connected keyframes are reprojected using the SIM3
matrix to get more correspondence matches. If the total
matches were enough (60 matches), this keyframe is
accepted and considered as a trusted loop keyframe and
SIM3 transformation matrix is a loop keyframe and its
pose is computed using our linearized method nearby with
the locations of its directly connected keyframes in the
covisibility graph. A new edge in the covisibility graph is
generated between the two keyframes of the loop.
Furthermore, a graph optimization is provided to get
better accuracy of the map on localization stage. 

Graph optimization (error reduction subsystem): This
module represents back-end subsystem and has modules:
local maps, covisibility graph and optimization algorithm,
we will describe work of optimization and mathematical
form in the following section.

Optimization algorithm: For each new frame, we
compute camera poses and their related uncertainty
represented by information matrices. The 3D keypoints
are then projected to the new keyframe pose and the
reprojection errors are minimized to obtain both the
camera pose and the information associated to such
estimation. Graph optimization algorithm (covisbilty
graph optimization) is the thread of computing keyframes
(or points) positions and information matrix with known
edge vectors. There is an offset ambiguity in the edge
map. To resolve this ambiguity, we add a special
reference keyframe to the surrounding environment. The
robot should be able to identify this reference keyframe
and evaluate the map offset such that the position of the
reference keyframe is always fixed. For our later
discussions we will assume that the last keyframe pose pNl

is the reference keyframe (or frame). 
There is an inconsistency in the map because of noisy

measurements. To reach the optimized trajectory of robot,
we provide an objective function that minimizes the
inconsistency as possible (reduce errors part) by
minimizing re-projection geometric error (difference
measure between the predicted and the measured
reprojections), corresponding to edge position
observations model which is described in Fig. 4. We
define the inconsistency error errij that connects pi to pj as
follows:

(6)ij trans j i ijerr | p -p -e

The orientation is computed with sufficient accuracy
using  the  methods  proposed  by (Kneip et al., 2012 and 
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Fig. 4: Robot poses for optimization algorithm

Kneip and Lynen, 2013). We exclude orientation
computation from our estimation model to make the
estimation problem a linear estimation model. The edge
variable  is an additive white Gaussian measurement noise
with covariance 'ij is considered 3-D random vector with
Gaussian distribution with mean  and covariance matrixije

'ij. Uncertainty in edge vector represented by its
covariance matrix 'ij varies from edge to another. This
inconsistency can be formulated as a non-linear least
squares problem (edge vector normalized error nErrij) as
follow:

(7)   T1 1T
ij trans ij ij j i ij j i ijij ij

nerr | err err p -p -e p -p -e
 

  

For simplicity we set Sij = 'ij
-1. The matrix Sij

represents the amount of information or certainty in the
edge vector between two nodes i and j. Now, we can write
nerrij as:

(8)   
trans

T

ij j i ij ij j i ijnerr p -p -e S p -p -e

Since, the probabilities densities are Gaussians, we
show that maximizing measurement likelihood of edge
position observation model is equivalent to minimizing
the sum of the weighted residual errors nerrij. Finally, we
are now able to define the total graph incosistent error F
as the objective function which is the double summation
of all inconsistent errors due to all edges vectors of graph
as follows:

(9)   l l
TN N

j i ij ij j i iji 1 j 1, j 1

1
F p -p -e S p -p -e

2   
  

By using the mathematical methods for optimization
(Barooah  and  Hespanha,  2007;  Merzban  et  al.,  2013;
Yin et al., 2014), we can derive Eq. 7. The objective is
toassociate an absolute pose to each node in the graph.
We will obtain matrix equation form for linearization
system which is the output of the optimization algorithm
as follows:

(10)AP B

Table 1: Dimensions of terms appeared in graph-based SLAM
Terms in graph-optimization algorithm. of SLAM Symbol Dimension
Relative displacement vector between two eij 3*1
keyframes i and j
Covariance matrix of edge Gij 3*3
State vector (linearized solution) P 3N*1
System matrix A 3N*3N
Coefficient vector B 3N*1
N: Number of keyframes (vertices)

where, A (system matrix), P(state vector), B(coefficient
vector) are defined by:

(11)
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Equation 11-13 are the solution to the optimization
problem expressed in Eq. 10. The dimensions of every
vector and matrix is given in Table 1. These results show
that graph optimization is equivalent to solving a linear
system of equations. So, the proposed system is truly
linear without approximation and has the following
properties:

Matrix A is symmetric: this is due to the fact that Sij

is a symmetric matrix, hence, the off diagonal elements of
A will be the same. 

Matrix A is singular with nullity = 3. This is true
because any sub matrix row in matrix A is the negative
sum of all other sub matrix rows.

Matrix A is positive semidefinite which can be
derived. Because matrix A is symmetric and positive
definite, it satisfies the conditions of covariance matrix.
We will highlight later the fact that A matrix is the
information matrix of the map. In Table 1, we provide the
dimensions of vectors and matrices used in our
implemenation. Equation 10 will compute the mean
estimation of keyframes poses. In next section we provide
formula to compute the covariance matrix 'P of the poses
of keyframes. In our system we assume that the reference
pose of the robot to be the last global frame, i.e. PNl = 03.
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We can use  graph optimization for point map
optimization. The edges are independent from  nodes and
from each other. This process enables us to estimate each
edge vector alone which extremely simplifies the map
update. Instead of updating the whole map every time, we
add measurements to the map, we only need to update the
optimization problem and then solve it to yield keyframes
(or frames) positions which represent full optimized
trajectory.

Computing the information matrix forthe translation
vector: To compute the unknown 3D keypoints locations
and keyframes poses from the observations, we minimize
their total prediction error. Our optimization is the model
refinement. Hence, it is essentially a matter of optimizing
a nonlinear objective function represents the total
reprojection error over nonlinear parameters (the features
and camera parameters). The inverse Hessian H (second
order derivative) at the minimum is a good estimate of the
covariance matrix (uncertainty amount) for these
parameters. The objective function defined as the mean
square error of reprojection errors as illustrated (defined
according to the method of least squares):

(14)       
N NT T* * * *

1j lj 1j 1j 2 j 2 j 2 j 2 j
j 1 j 1

E u -u u -u + u -u u -u
 

 

Where:
 
 

*
lj

*
2 j

u proj X , image1

u proj X, image 2





!

where, u1j, u2j are the projection of keypoint j onto frames
1, 2, respectively. For each frame we need to find a set of
image points u1j

*, u2j
* where X0R3 is the  3D environment

points and proj is the projection function that projects 3D
triangulated points from current observation (X, t) in the
map of SLAM to the 2D frame plane 1 and 2 as illustrated
in Fig. 1. The pose Pi is the pose of frame i. It includes
both orientation and translation of frame i. In this
optimization problem, u1j, u2j are considered to be the
measurements that have uncertainty given by covariance
matrix 'uij. Both u1j and u2j are 2-D vector that represents
the location of a detected keypoint (image feature) inside
the image plane and it has the units of pixels. Its 2×2
uncertainty matrix 'uij is taken as unity matrix which
means that the uncertainty is taken as 1 pixel as given in
the literature. We differentitate Eq. 14 twice with respect
to camera  pose ( translation vector and rotation matrix),
we get:

(15)
T T* * * *2 N N

1j 1j 2 j 2 j

j 1 j 1

u u u uE
2 +2

T T T T T T 

          
                           
 

We can use:

1 T T
1 1 2 2T

H H2J J +2J J

 

where, J1, J2 are the Jacobins of  u1j
*, u2j

* w.r.t camera
pose. Thus, computing the error vector of reprojection in
camera of point p and its Jacobians with respect to the
camera pose results in a matrix of dimensions 2×6.

RESULTS AND DISCUSSION

Experimental simulations and results evaluation: In
this section we evaluate the accuracy and speed of our
system, by the comparison our designed system with the
stereo version of ORB-SLAM and LSD SLAM system.
For different datasets like KITTI dataset, TUM-RGBD
dataset   (Sturm   et   al.,   2012)   and   EuroC   dataset
(Burri et al., 2016).  In Fig. 5, we show output of our
system which consists of robot trajectory and point map.
There are evaluation tools to compute error metrics of the
robot estimated trajectory, to evaluate the quality and
accuracy of  our SLAM system. The error metric doesn’t
assess the map accuracy but can assess localization
accuracy. One of the most important types of errors was
mentioned in the literature for evaluating the SLAM
problem is Relative Pose Error (RPE) (Kummerle et al.,
2009) that is helpful for graph-based SLAM. We evaluate
it in the TUM-RGBD dataset and EuroC dataset. A more
intuitive direction is to estimate the Absolute Trajectory
Error (ATE) (Sturm et al., 2012) after mapping the two
trajectories: the ground truth and the estimated path. We
evaluate it in the KITTI dataset.

The Relative Pose Error (RPE) which is estimated by
calculating the translational and rotational difference
between estimated robot poses P = {p1, p2, p3, ..., pN} and
ground truth robot poses as follows: 1 2 3 N

ˆ ˆ ˆ ˆ ˆP p , p , p , ..., p

(16)     2 2

i i i i i

1ˆ ˆ ˆRPE P;P trans p -p +rot p -p
N

 

where, N is the number of estimated relative poses. The
unit of RPE is m2, rad2. The Absolute Trajectory Error
(ATE) which is estimated by calculating the translational
difference  between  estimated  robot  poses  P  =  {p1,  p2,
p3, ..., pN} and ground truth robot poses 1 2 3 N

ˆ ˆ ˆ ˆ ˆP p , p , p , ..., p
which defined as the squared Euclidean distance between
corresponding poses as follows:

(17)   2

i i i

1ˆ ˆATE P;P trans p -p
N

 

where, N is the number of estimated relative poses and the
unit of ATE is m2. To compute RMSE, we take the
squared root of  ATE error as follows:

(18) ˆRMSE P;P ATE
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Fig. 5 (a-b): (a) Local maps (red points) and keyframes (blue cameras) mapping  for our system and (b) Robot tracking
(poses) and feature matching (green rectangles)

Fig. 6: Robot trajectory for our system (orange line) and
ground truth (green line) in case of dataset
KITTI_0

The unit of ATE is m. We provide results of the
trajectories and maps estimated by our proposal and
ORB-SLAM system for KITTI dataset. First, we have
simulated our vSLAM system on the KITTI dataset
(Geiger et al., 2012) which is recorded by a stereo camera
at 20 fps and a resolution 512×382 saved in lossless png
format. We use the 11 sequences that is recorded for a car
driven around a residential area with accurate ground truth
from GPS and a Velodyne laser scanner. The ground
truth/estimated trajectory of the robot is shown in Fig. 6-8
for a robot moving in sequence 00 and sequence 01 (150
frames only and sequence 08  of  KITTI  database  (which

Fig. 7: Robot trajectory for our system (green line) and
ground truth (red line) in case of dataset
KITTI_01 (150 frames only)

 

Fig. 8: Robot trajectory for our system (orange line),
ground truth (blue line) and RPE error in case of
dataset KITTI_01 (150 frames only)
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Fig. 9: Synthetic evaluation of speed performance of our system (blue lines) compared to the well-known BA algorithm
(orange lines).

show the loop closure). We show that our system can
detect loops in the previous figures. The RMSE was
estimated for KITTI dataset for all sequences. As shown
in the figures, the proposed vSLAM produced an accutate
camera tarjectory which is roughly aligned with the
trajectory of ground truth.We estimate the performance of
our proposed graph optimization algorithm of SLAM
system w.r.t well-known nonlinear optimization algorithm
which is called global Bundle Adjustment (BA) used in
ORB SLAM system (Mur-Artal and Tardos, 2017). We
note  that  the  speed  and  efficiency  of  our  pose  graph
optimization is higher than that of global BA of ORB
SLAM system because it runs in real time faster (3X) than
global BA as shown in Fig. 9.
 

CONCLUSION

Our graph-based SLAM can compute the translation
vector, scale and rotation matrix individually. We show
that our approach optimization method can provide
reliable and promoted results based on stereo camera
compared to the newly state-of-the-art SLAM systems
specially in accuracy and in dealing with incorrect loops
for any general scene planar or non-planar. We utilize a
stereo camera which minimizes scale drifts, initialization
failures and integrate it with a linear optimization
algorithm can provide one accurate solution in contrast to
the well-knownnonlinear global optimization BA of stereo
ORB-SLAM which provides multiple non-accurate
solutions for optimization. Furthermore, our stereo system
runs in real time faster (3 X) than the well-known systems
in the literature.

RECOMMENDATIONS

In future work, we can enhance tracking performance
by using minimization of the photometric residual
corresponding to photometric intensity observation model
and including uncertainty of this error in our optimization.
We conclude that, we can enhance SLAM accuracy in
another future work using IMU sensor device, the IMU
will aid in the recovery of ambiguous scale provided that 
the motion dynamics is rich enough. The IMU can also
enhance the short-time estimates for pose, since, it usually
has a higher sampling rate than the camera (upto 1000
sample/s compared to the common 30 frame/s of the 
camera). There is no constraints on the combination the
sensors used IMU, laser range finder and GPS all
together.
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